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ABSTRACT 
The availability of thousands of genome wide molecular markers has made possible the 

use of genomic selection in plants and animals. However, the evaluation of models for genomic 
selection in plant breeding populations is very limited. In this study, we provide an overview of 
several models for genomic selection, whose predictive ability we investigated using two plant 
data sets. One data set contains the historical phenotypic records of a series of wheat (Triticum 
aestivum L.) trials and recently generated genomic data. The other data set pertains to 
international maize (Zea mays L.) trials in which two disease traits (Exserohilum turcicum and 
Cercospora zeae-maydis) were measured in maize lines evaluated in five international 
environments. Results showed that models including marker information yield important gains in 
predictive ability, relative to that of a pedigree-based model––this, with a modest number of 
markers. Estimates of marker effects were different across environmental conditions, indicating 
that genotype × environment interaction is an important component of genetic variability. 
Overall, the study provides evidence from real populations indicating that genomic selection can 
be an effective tool for improving traits of economic importance in commercial crops.  

 
INTRODUCTION 

Selection in plant breeding is usually based on estimates of breeding values obtained with 
pedigree-based mixed models (Piepho et al., 2007; Piepho, 2009). In their multivariate 
formulation, these models can also accommodate genotype × environment (GE) interaction 
(Crossa et al., 2006; Burgueño et al., 2007). These models have been used successfully for 
predicting breeding values in plants and animals. However, pedigree-based models cannot 
account for mendelian segregation, a term that under an infinitesimal additive model (e.g. Fisher, 
1918) and in absence of inbreeding, explains one half of the genetic variability. Molecular 
markers (MM) allow tracing mendelian segregation at several positions of the genome, which 
gives them enormous potential in terms of increasing the accuracy of estimates of genetic values 
and the genetic progress attainable when these predictions are used for selection purposes. 

Marker-assisted selection (MAS) has been widely used in plant breeding to improve a 
few traits controlled by major genes. However, adoption of the technology has been limited 
because the bi-parental populations used for mapping quantitative trait loci (QTL) are not 
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easily used in breeding applications. Also, MAS presents limitations for improving traits 
controlled by many loci with small effects. On the other hand, genomic selection (GS) (or 
genome-wide selection) is an approach for improving quantitative traits (Meuwissen et al., 
2001) that uses all available MM across the genome to estimate genetic values. 

Reports on the use of GS in plants are few and refer mainly to computer simulation 
studies such as the research of Bernardo and Yu (2007), who concluded that GS is superior to 
marker-assisted selection in maize. In a recent article, de los Campos et al. (2009a) used 
Bayesian estimates from genomic regression and showed that models using MM had better 
prediction accuracy of grain yield in wheat than those based on pedigree. Genomic selection has 
been validated in animal breeding for predicting breeding values (Gonzalez-Recio et al., 2008; 
Hayes et al., 2009; VanRaden et al., 2009; de los Campos et al., 2009a). 

In a usual genetic model, the phenotypic response of the ith individual ( ) is described as 
the sum of a genetic value, , and a model residual,

iy

ig iε , such that the linear model for n 
genotypes  is represented as ( ni ,...,1= ) iii gy ε+= .  One method for incorporating markers in 
models for GS is to define  as a parametric regression on marker covariates  (which can 
take values of 1, 0 or -1 for a biallelic marker of a segregating population or values of 1 and 0 for 

inbred lines) of the form , such that  (j=1,2,…,p), where
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regression of  on the jth marker covariate. In matrix notation, the model is expressed as 
. Usually, the number of markers exceeds the number of individuals, and estimation 

of marker effects via ordinary least squares (OLS) is not feasible. In OLS, estimates are obtained 
to maximize model goodness of fit to the training set, and model complexity is not considered. 
When the number of MM is large, this typically yields high mean-squared error of estimates of 
marker effects and poor predictive ability.  
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Penalized estimation methods such as ridge regression (Hoerl and Kennard, 1970) or the 
absolute shrinkage and selection operator LASSO (Tibshirani, 1996) usually yield higher 
predictive ability. In ridge regression, estimates are obtained by minimizing the residual sum of 

squares,  subject to the following constraint: , or equivalently, 

. The solution to this optimization problem can be shown to 

be , where 
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(β =ˆ ( ) 0>= tλλ  is a regularization parameter that induces 
shrinkage of estimates of effects towards zero. Even though these estimates are biased, the 
sampling variance is reduced yielding smaller mean-squared error and better predictive ability 
(e.g., Hastie et al., 2009). 

From the Bayesian perspective, estimates of marker effects from ridge regression can be 
viewed as the posterior mean of a model with a Gaussian likelihood and a prior distribution of 
marker effects that is the product of p normal densities, that is, 
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components are known, estimated marker effects are best linear unbiased predictors or BLUP 
(e.g., Schaeffer, 2006). A disadvantage of ridge regression, or its Bayesian counterpart, is that 
the extent of shrinkage is homogeneous across markers, which may not be appropriate in GS if 
some markers are located in regions that are not associated with genetic variance while others 
may be linked to QTLs (Goddard and Hayes, 2007).  

An alternative to ridge regression is to use LASSO (Tibshirani, 1996). Estimates in 

LASSO are obtained by minimizing the residual sum of squares,  subject 

to the following constraint:
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Unlike the quadratic penalty of ridge regression, , the absolute-value penalty of LASSO, ∑
j

j
2β

∑
j

jβ , induces selection and shrinkage simultaneously. From a Bayesian perspective, LASSO 

estimates can be viewed as the posterior mode of a Bayesian model with a Gaussian likelihood 
and with a prior on marker effects that is the product of p IID double-exponential (DE) 

distributions, that is ( ) ( )∏∏ ⎟⎟
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Gaussian prior of the Bayesian ridge regression, the DE has higher peaks of mass at zero and 
thicker tails. Here, ( )tλ  controls the shape of DE density, with higher values increasing the 
peak of mass at zero. A computationally convenient representation of this model (hereinafter 
called BL, for Bayesian LASSO) was presented by Park and Casella (2008) and used in GS by 
de los Campos et al. (2009a). The latter authors discussed the connections between the BL and 
other models for GS such as those proposed by Meuwissen et al. (2001). Contrary to ridge 
regression, the BL and the models proposed by Meuwissen et al. (2001) induce marker-specific 
shrinkage.  

One variant of the traditional LASSO is the elastic net LASSO (Zou and Hastie, 2005), 
which differs from LASSO in that it uses two penalties. The advantage of the elastic net 
method is that, by adding another penalty, it stabilizes the LASSO solution when some 
predictors are highly correlated; such is the case of MM used in GS. Two other variants of 
LASSO are the group LASSO and the fused LASSO. Group LASSO (Yuan and Lin, 2006) 
selects variables at a group level such that some groups of predictors are selected together; this 
may be useful when instead of examining the effect of individual MM, the researcher wishes to 
examine the effects of haplotypes (genes) comprising several MM in high linkage 
disequilibrium. Group LASSO could also be useful when there are more than two alleles for 
each MM, and the breeder wishes to keep all the alleles of the same MM active in the model. 
The fused LASSO focuses on adjacent predictors such that the value effects tend to be the same 
for adjacent predictors. This can be useful when there is a natural ordering of predictors, for 
example, when markers have been ordered on a common map.  

An alternative to parametric regressions is to use semi-parametric methods such as 
reproducing kernel Hilbert spaces (RKHS) regression (Gianola et al., 2006; Gianola and van 
Kamm, 2008). A Bayesian RKHS regression for molecular markers regards genetic values as 
random variables coming from a Gaussian process with a (co)variance structure that is 
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proportional to a kernel matrix K (de los Campos et al., 2009b), that is, ( ) ( )jiji ,gg xx ,KCov ∝ , 
where ,  are vectors of marker genotypes for the ith and jth individuals, respectively, and 

 is a positive definite function evaluated in marker genotypes. One of the advantages of 
RKHS regression is that it can be used with almost any information set (e.g., covariates, strings, 
images, graphs). This is particularly important at a time when techniques for characterizing 
genomes are changing rapidly. A second advantage is that in RKHS, the model is represented in 
terms of n unknowns, which gives RKHS a great computational advantage relative to parametric 
methods, when p>>n. 

ix jx
( ).,.K

 In this chapter, we evaluate several models for predicting genetic values that differ in the 
type of genetic information used (MM, pedigree, or both) and in the way that MM data are 
incorporated into the model (either parametric regression via Bayesian LASSO or semi-
parametric regression via RKHS). Models are compared based on predictive ability estimated 
using cross-validation methods and evaluated in two data sets form CIMMYT’s Global Wheat 
and Maize Programs. In the remaining sections, the data and models are described, the results 
presented, and a discussion of the use of MM in GS provided. 

 
EXPERIMENTAL DATA 

Wheat experimental data set 
Two CIMMYT wheat international multi-environment trials were studied: Elite Spring 

Wheat Yield Trials (ESWYT) 20 and 24. ESWYT20 had 47 lines, some of them form 7 sets of 
sister lines, each with 2-4 sisters, whereas ESWYT24 comprised 46 lines with some of them 
forming  8 sets of sister lines, each with 2-4 sisters. A total of 93 lines were analyzed. In general, 
the data for each ESWYT are balanced, although sometimes only one replicate could be 
recorded. There are no lines in common among the historical sequence of ESWYTs. A total of 
ten international sites (E1-E10) common to both ESWYT20 and ESWYT24 were included in 
this study; the trait analyzed was average (across replicates) grain yield, standardized to have a 
sample variance equal to one in each environment. 

Diversity Array Technology (DArT) markers were generated by Triticarte Pty. Ltd. 
(Canberra, Australia; http://www.triticarte.com.au), which is a whole-genome profiling service 
laboratory. In total, 234 loci were scored as present (1) or absent (0) across the 93 wheat lines. 
The coefficient of parentage (COP) between individuals, i.e., the probability of being identical 
by descent, was derived from the pedigree using the Browse application 
(http://cropwiki.irri.org/icis/index.php/TDM_GMS_Browse) of the International Crop 
Information System (ICIS) described in McLaren et al. (2005) and accounts for selection as well 
as inbreeding. 
 
Maize experimental data set 

The maize data set is from the Drought Tolerance Maize (DTMA) project of CIMMYT’s 
Global Maize Program. This project focuses on developing drought tolerant maize for Africa and 
comprises several maize breeding programs operating in different southern, eastern and western 
African countries in coordination with the tropical maize breeding program in Mexico. The data 
used in this study come from a large study aimed at detecting chromosomal regions affecting 
drought tolerance and adaptive traits identified in global maize germplasm based on analysis of 
available marker data from genotyping 300 tropical inbred lines with 1152 single nucleotide 
polymorphisms (SNPs). No pedigree was available for this data set. 

http://cropwiki.irri.org/icis/index.php/TDM_GMS_Browse
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Two traits were analyzed in this study: (1) northern corn leaf blight (NCLB) disease 
caused by the fungus Exserohilum turcicum and evaluated in three international environments: El 
Batán (Mexico), Harare (Zimbabwe), and Mpongue (Zambia); and (2) gray leaf spot (GLS) 
caused by the fungus Cercospora zeae-maydis and evaluated in San Pedro Lagunillas (Mexico) 
and Pereira (Colombia). NCLB is a major foliar disease of maize that occurs worldwide, 
virtually everywhere maize is grown. The disease is polycyclic in nature and can cause extensive 
defoliation during the grain-filling period, resulting in grain yield losses of 50% or more (Welz 
and Geiger, 2000). Pandemic in Africa, GLS is now recognized as one of the most significant 
yield-limiting diseases of maize worldwide and is associated with the rapid adoption of 
conservation agriculture techniques (Ward et al., 1999). For the El Batán site, the NCLB trait 
analyzed was the area under the disease progress curve, which is a measure of quantitative 
disease resistance that integrates all aspects of disease progress in relation to host development 
and growth. It therefore characterizes the overall patterns of disease increase over time or over 
time and space. For the Harare, Mpongue, Pereira, and San Pedro Lagunillas sites, the NCLB 
and GLS traits were analyzed using an ordinal scale from 1 (no disease) to 5 (complete 
infection). The Box-Cox (Box and Cox, 1964) transformation was applied to the original data to 
make their distribution more symmetric; after transformation, data were standardized to get a 
unit sample variance within each environment. 
 
 

STATISTICAL MODELS 
In this study, the response consisted of the average performance of each line within each 

environment, that is, ∑
=×

=
in

k
ik

i
i y

nSD
y

1

1 , where is the number of replicates available for the 

ith line and SD  is the (sample) standard deviation of 

in

{ }iy . With this, and extending the model to 
allow for an intercept, the data-equation becomes: 

    iii gy εμ ++= .         [1] 
We adopted Gaussian assumptions for model residuals, and allowed for heterogeneous 

residual variances to accommodate unbalanced data. Specifically, the joint distribution of model 

residuals in [1] is ( ) ∏
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 Models will differ in the type of information and the methods used to describe . In the 
following sections, we present the different classes of models used to incorporate pedigree and 
marker data using either parametric or semi-parametric methods.  

ig

 
Standard infinitesimal model 

A standard additive infinitesimal model (e.g., Fisher, 1918, Henderson, 1975) postulates 
that genetic values are multivariate normal, centered at zero, and with a co-variance matrix 
proportional to the numerator relationship matrix computed from the pedigree, that is, ii ag = , 
where ( ) ( )2

1 ~,..., an Naa σA0,aa = , where  is the additive variance. In a Bayesian setting, a 2
aσ
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prior is assigned to variance parameters as well. Following standard assumptions, we chose 
independent scaled inverse Chi-square distributions for the residual and the additive variance. 
Collecting assumptions, the joint prior of the pedigree-based model (P) becomes: 
          ( ) ( ) ( ) ( )aaaaaaa SdfSdfNSdfSdfp ,,,,,,,, 2222222 σχσχσσσμ εεεεεε

−−∝ A0,aa  ,               [2a]                  

where  and  are prior degree-of-freedom and scale parameters, respectively. The joint 
posterior distribution for this model is obtained combining the likelihood and prior such that: 
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where H denotes all hyper parameters. This joint posterior distribution does not have closed 
form, but a Gibbs sampler (e.g., Sorensen and Gianola, 2002) can be used to draw samples from 
it. This model was fitted using 1== εSSa  and 4== adfdfε  for the scale and degree-of-freedom 
parameters, respectively. 
 Pedigree was not available for the maize data set. An alternative is to replace A in [2a] 
and [2b] with a kinship matrix (U) estimated using marker genotypes. A kinship-based 
infinitesimal model (K) is obtained using ii ug = , where ( ) ( )2

1 ~,..., un Nuu σU0,uu ′=  and  
is the associated variance parameter. The joint prior and posterior distributions of this model are: 

2
uσ
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respectively. This model was fitted using 1== εSSu  and 4== udfdfε  as values for the scale 
and degree-of-freedom parameters, respectively. A main difference between the pedigree-based 
model and the model defined by [3a] is that in the latter, the matrix of relationships, U, is 
computed using marker genotypes; it therefore accounts for mendelian segregation.  

 

Parametric GS model using the Bayesian LASSO (BL) 
As stated in this model, marker data are introduced using a parametric regression on 

marker genotypes. The standard Bayesian LASSO (BL) of Park and Casella (2008) can be 
extended to accommodate pedigree data as well, as described in de los Campos et al. (2009a). 
For this model, we can have two cases depending whether the matrix A or the Kinship matrix 
(U) is available, as described below. 
 
PM–BL model  

When a pedigree is available, genetic values can be described as the sum of a regression 
on marker covariates and a regression on pedigree (e.g., de los Campos et al., 2009a). The data 
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equation becomes iij

p
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linear model (upon assigning a flat prior to μ ) is: 
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In [4a], marker effects are assigned independent Gaussian priors with marker-specific 
variances, ( )22,0~ jjj N τσββ ε . At the next level of the hierarchical model, the ’s are assigned 

IID exponential priors, 

2
jτ

( 222 ~ λττ j

IID

j Exp ). At a deeper level of the hierarchy, the regularization 

parameter, , is assigned a Gamma prior with rate (δ) and shape (r), which in this study were 

set to  and . The prior for the vector a is as in the standard infinitesimal model 
(see [3a]). Finally, independent scaled-inverse chi-squared priors are assigned to the variance 
parameters, and the scale and degree-of-freedom parameters were set to 

2λ
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1== εSSa  and 
, respectively. The above model is referred to as PM-BL (for pedigree and marker 

models using the BL). Combining the Gaussian likelihood with the prior assumptions described 
in [4a], the posterior distribution of the PM-BL model is: 
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[4b] 
A set of fully conditional distributions that can be used to implement a Gibbs sampler for 

the above model is given in de los Campos et al. (2009a). 
 
KM–BL model  

When a pedigree is not available, the relationship matrix A can be replaced by the kinship 
matrix (U) computed from marker genotypes. The data equation of this model (KM-BL) is 
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 The above model is equivalent to that described by [4b] with U replacing A; therefore, 
the algorithm described by de los Campos et al. (2009a) can also be used to draw samples from 
the posterior distribution defined by [5b]. This model was fitted using the following hyper-
parameters values: , . 4101 −×=δ 6.0=r 1== εSSu , and 4== udfdfε . 
 
M–BL model  

A special case of PM-BL (see [4b]) is obtained by removing  from the data equation, 

such that 
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based model using the Bayesian LASSO.  The prior and posterior distributions of this model are: 
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Semi-parametric GS model using Bayesian reproducing kernel Hilbert spaces (RKHS) 
regression 

As stated earlier, an alternative to the parametric regression is to introduce marker 
information using RKHS, an alternative that is discussed next. 
 
PM–RKHS model 

When markers and pedigree are available, genetic values can be modeled as the sum of 
two components, , where  is a regression on the pedigree, as described earlier, and 

 is a semi-parametric regression on marker genotypes. In RKHS the assumption is that 

, a Gaussian process with null-mean and a (co)variance function proportional to a 
reproducing kernel, 
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( )jxixK ,RKHS , evaluated in marker genotypes; here  and  are vectors of 
marker genotype codes for the ith and jth individuals, respectively. The joint prior distribution of 

, f, and the associated variance parameters , , and  is as follows: 

ix jx

a 2
εσ

2
aσ 2

fσ
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( ) ( ) ( )
( ) ( ) ( ).,,,                                 

,,,,,,,,,
222222

2
RKHS

2222

fffaaa

faffaafa

SdfSdfSdf

NNSdfSdfSdfp

σχσχσχ

σσσσσμ

εεε

εεε

−−−×

∝ K0,fA0,afa,
           [7a] 

In general, any positive definite function, i.e., any function satisfying  

for the all non-null sequence{ , is a valid choice of kernel. In this study, we chose 

( )∑∑
i j

jijiαα xxK ,RHKS

}iα

( )ji xxK ,RHKS  to be the Gaussian kernel ( )
⎭
⎬
⎫

⎩
⎨
⎧
−=

5.
RHKS 2exp,

q
dij

ji xxK , where  

is a squared-Euclidean distance, and  is the sample median of the matrix of sampled squared-
Euclidean distances

( )∑
=

−=
p

k
jkikij xxd

1

2

0.5q
{ }ijd . Note that, with our choice of kernel, if =  ijd 5.q

( ) ( )2 ≈

=fS

13.0exp −=

5.q
1== aS

,K RHKS ji xx

Sε

, which implies that a prior correlation of 0.13 is assigned to 
pairs of lines whose squared-Euclidean distances are equal to the median squared-Euclidean 
distance, and higher (lower) prior correlation is assigned to pairs of lines that are closer (or 
farther apart) than . The scale and degree-of-freedom parameters of the prior described in [7a] 
were set to  and 4=== fa dfdfdfε , respectively 

Combining the prior assumptions in [7a] with those of the likelihood, the fully 
conditional distribution of this model becomes: 

( ) ( ) ( )

( ) ( ) ( ).,,,                                          

,,,,,,

222222

2
RKHS

2

1

2
222

fffaaa

fa

n

i i
iiifa
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σσ
σ

μσσσμ

εεε

ε
ε

−−−

=

×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∝ ∏ K0,fA0,ayfa,

        [7b] 

A slight extension of the algorithm used to draw samples from the pedigree model (e.g., 
Sorensen and Gianola, 2002) can be used to draw samples from the above distribution (see 
Appendix). 
 
KM–RKHS model 

As before, when a pedigree is not available, one can replace a and A in [7a] with u and 
U, respectively, and the prior and posterior distribution become: 
( ) ( ) ( )

( ) ( ) ( ).,,,                                 

,,,,,,,,,
222222

2
RKHS

2222

fffuuu

fuffuufu

SdfSdfSdf

NNSdfSdfSdfp

σχσχσχ

σσσσσμ

εεε

εεε

−−−×

∝ K0,fU0,ufu,
     [8a] 

and 

( ) ( ) ( )

( ) ( ) ( ).,,,                                         

,,,,,,
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2
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2
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fffuuu

fu

n

i i
iiifu

SdfSdfSdf
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n

fuyNHp

σχσχσχ

σσ
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εεε

ε
ε

−−−

=

×

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++∝ ∏ K0,fU0,uyfu,

   [8b] 

The same algorithm that is used to draw samples from [7b] can be used to obtain samples from 
the posterior distribution defined in [8b] (see Appendix). 
 
M–RKHS model 
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 A marker-based RKHS (M-RKHS) model can be obtained by removing  from the data 
equation in [7a] and [7b]. The prior and posterior distribution of this model are given by 

ia

( ) ( ) ( )
( ) ( ).,,                                                                  

,,,,,,,,,,
2222

222
RKHS

222
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and  
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         [9b] 

respectively. 
Note that the kinship-based model, whose posterior distribution is given by [3b], has 

exactly the same structure as that of the above model but with  replaced with U, the 
Gaussian kernel and the kinship matrix are simply two different (co)variance functions.  

RKHSK

Inferences for all the above models were based on 30,000 samples (obtained after 
discarding 5,000 samples as burn-in). Convergence was checked by inspecting trace plots of 
variance parameters. 

 
CROSS-VALIDATION 

Cross-validation (CV) is used to assess how the results of a statistical model will 
generalize to another data set––for example, how a fitted model will predict data that were not 
used to fit the model. Predicting the performance of genotypes with phenotypes yet to be 
observed (e.g., newly developed lines or lines that have been evaluated in few environments) is 
central in plant breeding; thus, cross-validation appears as a natural way of assessing model 
performance from the breeder’s perspective. A simple approach for evaluating predictive ability 
consists of dividing the data into a training and a validation sample, sometimes also referred to 
as a testing set. Models are fitted using the training sample, and the fitted models are used to 
predict outcomes in the validation sample. This approach is appropriate for large data sets but is 
not recommended for small data sets, because the size of the training and validation samples 
becomes too small (e.g., Hastie et al., 2009).  

A k-fold cross-validation is a generalization of the training/testing evaluation described 
above. Here, the data set is divided into k groups; this is done by assigning observations 
{i=1,..,n} into k disjoint se }kS . Each of these sets can then be used to measure 
predictive ability. For example, using the 1st set, the data can be divided so that the training set 
contains all the observations in { }kSS ,...,2 and the testing set hose in 1S . Subsequently, models 
are fitted using data into{ }kSS ,...,2  and the fitted model is used to obtain predictions for 

t is, { }1:ˆ Siyi ∈ . Repeating this exercise for the 2nd, 3rd,.., kth sets yields 

a whole set of CV predictions { }n
iiy 1ˆ =  that can be compared with actual observations 

ts 

 t

observations in  tha

{S ,...,1

{ }1S ,

{ }n
iiy 1=  to 

assess predictive ability. 
  

RESPONSE PATTERNS OF MARKER EFFECTS ON ENVIRONMENTS FOR THE 
WHEAT AND MAIZE DATA 
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Principal component analysis was performed using estimates of marker effects obtained 
from the PM-BL fitted to the entire wheat and maize data sets. Results are displayed in a biplot 
of the first two principal components axes. A large number of articles on the use of biplot 
analysis for studying genotype × environment interaction has been published (Cornelius et al., 
2001; Crossa et al., 2001, 2004). For this study, consider a set of estimated molecular marker 
effects measured in various environments arranged in a two-way table { }jhβ=B . Such a two-
way table may be analyzed through singular value decomposition (or principal component) 
analysis as  

∑
=

=
t

m
hmjmmjh

1

γαξβ      [10] 

where jhβ  is the estimated effect of the jth molecular marker (j=1,2,…,p) in the hth environment 
(h=1,2,…,s); mξ ’s ( tξξξ ≥≥≥ ...21 ) are scaling constants (singular values) that allow the 
imposition of orthonormality constraints on the singular vectors for molecular markers, 

),..., ′=m ( 1m pmααα , and for environments, ),...,( 1 ′= smmm γγγ , such that =1 and 

 for m≠m′.  

∑∑
==

=
s

h
hm

p

j
jm

1

2

1

2 γα

0' =hmγ
1
∑
=

s

h
γ'jmjmα

1
=∑

=
hm

p

j
α

The biplot graphs vectors  and  versus vectors  and , where molecular 
markers and environments are represented as vectors in a two-dimensional space (Gabriel, 1971, 
1978). The length of the vectors approximates the variance accounted for by the specific 
molecular marker and environment. Molecular markers represented in the same direction as the 
environments had positive effects on those environments, whereas molecular markers located in 
the opposite direction to the environments have negative effects on those environments (note that 
the relevance of a marker is given by the absolute value of marker effect; the sign of the 
estimated effect only indicates which allele should be favored in selection. For example, a 
positive effect means that substituting the allele coded with 0 by that coded with 1 is expected to 
increase the trait of interest, something desirable for grain yield and undesirable for disease 
traits). The cosine of the angle between two environments (or molecular marker effect) 
approximates the correlation of the two environments (or molecular marker), with an angle of 
zero indicating a correlation of +1, an angle of 90o (or –90o) a correlation of 0, and an angle of 
180o a correlation of –1.  

1jα 1hγ 2jα 2hγ

  
RESULTS AND DISCUSSION 

Estimates of Variance Components 
The estimated posterior means and the posterior standard deviation of the variance 

parameters ( ), and of 2222 ,,, fua σσσσ ε λ  obtained when models were fitted using all available 
records (full-data model) are presented in Tables 1, 2, and 3 for the wheat data set and the two 
traits of the maize data set, respectively. The posterior mean of the residual variance can be used 
to assess model goodness of fit. Here, since data were standardized to have a sample variance 
equal to one, the estimate of the residual variance gives an indication of the proportion of 
phenotypic variance that is attributable to model residuals, and 1-  gives the proportion of 
phenotypic variance attributable to differences between genotypes. In the wheat data set (Table 

2
εσ
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1), the pedigree model always gave the worst fit (i.e., larger posterior mean of residual variance), 
and the RKHS models fitted the data better than molecular-based models using the BL. Also, in 
this data set, models including markers and pedigree (PM) almost always had a better fit than 
those based on molecular markers or pedigree only.  

The differences in goodness of fit between models fitted to the maize data sets were not 
as marked as those in the wheat data set. This occurs because, unlike in the case of the wheat 
data set, in maize all models are marker-based models; the comparison involves different ways 
of incorporating markers, rather than different information sets such as pedigree vs markers. In 
the analysis of NCLB disease, the kinship model (K) fitted the data slightly better than the M-BL 
and KM-BL models in Harare and Mpongwe sites, whereas for GLS disease, models M-RHKS 
and KM-RHKS gave the best fit to the data in both sites, Pereira and San Pedro Lagunillas. 

For the wheat data set, estimates of variance components,  and , obtained from 
PM-RHKS can be used to assess the relative contribution to genetic values of the regression on 
markers ( ) and that of the regression on the pedigree ( ). From the model described by [7a], 

, where 

2
aσ 2

fσ

if
a=

ia
( ) ( ) 2, ai iiaVar σ ( ) iFiia += 1,  is the ith diagonal element of matrix A and  is the 

coefficient of inbreeding for the ith line, and 
iF

( ) ( ) 2
fσ  ,K 2

fii σ== xRKHS xifVar  because 
 is a standardized kernel, with ( ii x, )xK RKHS ( ) 1,K =ii xx . In the wheat data set, the average 

value of  was close to 2 (1.98); thus, comparison of the relative contribution of each 

component to the regression can be based on the ratio 

iF+1

( ) 2

2

2 a

f

σ
σ

2

2

a

f

i σ
≈

,ia
σ

2
aσ

. In the wheat data this 

ratio was larger than 1.6 in all environments except in E6, where it was 0.6753. In E1 and E8, 
this ratio was 3.18 and 2.44, respectively (Table 1). These results indicated that in the PM-RHKS 
model for the wheat data set, markers contributed more to estimates of genetic values than did 
the pedigree. In agreement with this, we also observed that the posterior mean of  for the P 

model is always larger than the posterior mean of  for models PM-BL and PM-RHKS, 
indicating that inclusion of markers, using either BL or RKHS, reduced the contribution of  to 
the conditional expectation.  

2
aσ

ia

 
Table 1. Posterior estimates of the mean and standard deviation (SD) of parameters ,  222 ,, fa σσσε

andλ  from full-data analysis of grain yield of 93 wheat lines genotyped with 234 DArT molecular  
markers. Five models* were fitted to each of 10 international environments (E1-E10). 
Envir
onme

nt 
Model*   2σε a  2σ   2

fσ  λ  
Mean SD Mean SD Mean SD Mean SD 

 P 0.814 0.156 0.198 0.094 --- --- --- --- 
 M-BL 0.419 0.108 --- --- --- --- 8.008 2.557 

E1 PM-BL 0.406 0.104 0.018 0.005 --- --- 7.749 2.439 
 M-RKHS 0.226 0.085 --- --- 0.853 0.212 --- --- 
 PM-RKHS 0.193 0.083 0.126 0.052 0.802 0.208 --- --- 
 P 0.528 0.124 0.330 0.120 --- --- --- --- 



 13

 M-BL 0.407 0.097 --- --- --- --- 8.170 2.386 
E2 PM-BL 0.377 0.095 0.017 0.005 --- --- 7.560 2.541 

 M-RKHS 0.265 0.075 --- --- 0.680 0.158 --- --- 
 PM-RKHS 0.183 0.068 0.156 0.062 0.571 0.159 --- --- 
 P 0.483 0.120 0.366 0.129 --- --- --- --- 
 M-BL 0.428 0.104 --- --- --- --- 8.417 2.610 

E3 PM-BL 0.405 0.099 0.018 0.005 --- --- 8.056 2.551 
 M-RKHS 0.248 0.072 --- --- 0.704 0.165 --- --- 
 PM-RKHS 0.159 0.062 0.176 0.068 0.565 0.159 --- --- 
 P 0.913 0.148 0.144 0.060 --- --- --- --- 
 M-BL 0.506 0.113 --- --- --- --- 10.418 3.589 

E4 PM-BL 0.499 0.109 0.021 --- --- 0.165 10.349 --- 
 M-RKHS 0.459 0.109 --- 0.007 0.508 --- --- 3.303 
 PM-RKHS 0.376 0.116 0.142 0.059 0.515 0.173 --- --- 
 P 0.521 0.124 0.332 0.120 --- --- --- --- 
 M-BL 0.454 0.110 --- --- --- --- 8.725 2.857 

E5 PM-BL 0.432 0.105 0.019 0.006 --- --- 8.658 3.086 
 M-RKHS 0.298 0.090 --- --- 0.699 0.180 --- --- 
 PM-RKHS 0.176 0.071 0.180 0.069 0.583 0.165 --- --- 
 P 0.311 0.099 0.525 0.147 --- --- --- --- 
 M-BL 0.516 0.112 --- --- --- --- 10.912 3.479 

E6 PM-BL 0.489 0.100 0.021 --- --- 0.184 10.474 --- 
 M-RKHS 0.347 0.104 --- 0.007 0.619 --- --- 3.447 
 PM-RKHS 0.213 0.075 0.273 0.112 0.368 0.149 --- --- 
 P 0.656 0.138 0.264 0.107 --- --- --- --- 
 M-BL 0.446 0.114 --- --- --- --- 8.743 3.173 

E7 PM-BL 0.425 0.102 0.019 0.005 --- --- 8.696 2.847 
 M-RKHS 0.321 0.091 --- --- 0.631 0.172 --- --- 
 PM-RKHS 0.216 0.081 0.166 0.068 0.567 0.168 --- --- 
 P 0.671 0.134 0.253 0.102 --- --- --- --- 
 M-BL 0.462 0.132 --- --- --- --- 8.673 4.330 

E8 PM-BL 0.448 0.121 0.020 0.008 --- --- 8.326 3.815 
 M-RKHS 0.250 0.085 --- --- 0.797 0.200 --- --- 
 PM-RKHS 0.214 0.088 0.142 0.057 0.695 0.204 --- --- 
 P 0.779 0.141 0.198 0.085 --- --- --- --- 
 M-BL 0.592 0.125 --- --- --- --- 12.409 4.163 

E9 PM-BL 0.596 0.133 0.027 0.013 --- --- 13.990 6.661 
 M-RKHS 0.379 0.108 --- --- 0.610 0.189 --- --- 
 PM-RKHS 0.278 0.104 0.151 0.064 0.595 0.188 --- --- 
 P 0.577 0.128 0.254 0.106 --- --- --- --- 
 M-BL 0.508 0.127 --- --- --- --- 11.741 5.258 

E10 PM-BL 0.472 0.084 0.021 --- --- 0.192 10.681 --- 
 M-RKHS 0.249 0.115 --- 0.007 0.730 --- --- 4.166 
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 PM-RKHS 0.172 0.073 0.164 0.064 0.616 0.176 --- --- 
* The five fitted models are: pedigree model (P); molecular marker regression model using Bayesian  
LASSO (M-BL); pedigree model (P) plus molecular marker model regression using Bayesian LASSO  
(PM-BL); molecular marker model using reproducing kernel Hilbert space (M-RKHS) regression; and  
pedigree model (P) plus molecular marker model using reproducing kernel Hilbert space regression  
(PM-RKHS). 
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Table 2. Posterior estimates of the mean and standard deviation (SD) of parameters ,  222 ,, fu σσσε

and λ  from the full-data analysis of Exserohilum turcicum on maize lines genotyped with 1152 SNP 
molecular markers. Five models* were fitted to each of three international environments: El Batán 
(Mexico), Harare (Zimbabwe), and Mpongwe (Zambia). 

Environment Model*   2
εσ   2

uσ   2
fσ  λ  

Mean SD Mean SD mean SD mean SD 

El Batán 
(México) 

K 0.190 0.086 0.395 0.081 --- --- --- --- 
M-BL 0.186 0.070 --- --- --- --- 18.018 4.719 
KM-BL 0.201 0.076 0.012 0.002 --- --- 19.014 5.125 
M-RKHS 0.170 0.079 --- --- 0.862 0.168 --- --- 
KM-RKHS 0.165 0.072 0.257 0.093 0.353 0.184 --- --- 

Harare 
(Zimbabwe) 

K 0.371 0.098 0.304 0.071 --- --- --- --- 
M-BL 0.431 0.091 --- --- --- --- 33.078 7.591 
KM-BL 0.452 0.090 0.008 0.002 --- --- 35.319 7.835 
M-RKHS 0.253 0.094 --- --- 0.786 0.155 --- --- 
KM-RKHS 0.269 0.092 0.190 0.069 0.390 0.172 --- --- 

Mpongwe 

K 0.283 0.072 0.265 0.054 --- --- --- --- 
M-BL 0.343 0.067 --- --- --- --- 32.04 6.315 
KM-BL 0.331 0.062 0.006 0.001 --- --- 30.88 5.966 
M-RKHS 0.170 0.059 --- --- 0.684 0.108 --- --- 
KM-RKHS 0.184 0.063 0.142 0.051 0.396 0.142 --- --- 

*The five models are: kinship model (K); molecular marker regression model using Bayesian LASSO  
(M-BL); kinship model (K) plus the molecular marker model regression using Bayesian LASSO (KM-BL);  
molecular marker model using reproducing kernel Hilbert space (M-RKHS) regression; and kinship model 
 (K) plus molecular marker model using reproducing kernel Hilbert space regression (KM-RKHS). 
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Table 3. Posterior estimates of the mean and standard deviation (SD) of parameters ,  222 ,, fu σσσε

and λ  from the full-data analysis of Cercospora zeae-maydis on maize lines genotyped with 1152 SNP 
molecular markers. Five models* were fitted to each of two international environments: Pereira 
(Colombia) and San Pedro Lagunillas, (Mexico). 
Environmen

t Model*   2
εσ   2

uσ   2
fσ  λ  

Mean SD mean SD mean SD mean SD 

  
Pereira 

(Colombia) 
 

K 0.119 0.039 0.351 0.044 --- --- --- --- 
M-BL 0.205 0.062 --- --- --- --- 20.314 5.104 
KM-BL 0.208 0.052 0.005 0.001 --- --- 20.618 4.149 
M-RKHS 0.100 0.034 --- --- 0.780 0.087 --- --- 
KM-
RKHS 0.106 0.034 0.252 0.060 0.229 0.112 --- --- 

 
San Pedro 
Lagunillas 
(Mexico) 

 

K 0.245 0.067 0.265 0.052 --- --- --- --- 
M-BL 0.377 0.064 --- --- --- --- 37.011 7.160 
KM-BL 0.377 0.069 0.006 0.001 --- --- 37.474 8.360 
M-RKHS 0.211 0.064 --- --- 0.612 0.109 --- --- 
KM-
RKHS 0.204 0.060 0.191 0.052 0.230 0.101 --- --- 

 
*The five models are: kinship model (K); molecular marker regression model using Bayesian LASSO  
(M-BL); kinship model (K) plus the molecular marker model regression using Bayesian LASSO (KM-BL);  
molecular marker model using reproducing kernel Hilbert space (M-RKHS) regression; and kinship model  
(K) plus molecular marker model using reproducing kernel Hilbert space regression (KM-RKHS). 

 
Predictive ability 

 Tables 4 and 5 show correlations between the phenotypic outcomes and the predicted 
values for each model in each environment and each trait. For the wheat data, PM models gave 
sizable gains in predictive ability relative to P; the only exception was E6, where PM-BL 
performed similarly to P. This provides evidence that indicates genomic selection can be 
effective for predicting genetic values of wheat lines. In this data set, in most environments (E2, 
E3, and E5-E10) RKHS outperformed BL; however, in E4 the opposite was true, indicating that 
model choice needs to be assessed for each trait/environment (Table 4). In general, correlations 
between predictive and observed values were higher for the PM-BL model than for the M-BL 
model, but this was not the case for PM-RKHS versus M-RKHS. Previous studies (e.g., de los 
Campos et al., 2009a) have also shown only slight differences between the predictive ability of 
the M and PM models, indicating that once markers are included, using pedigree information 
may not affect, or may increase only slightly, the ability of the model to predict future data. 
 For the NCLB maize data (Table 5), the CV correlations ranged from 0.44 to 0.52. These 
values are smaller than those obtained for the wheat data. More importantly, the differences in 
CV correlations between models were not as marked as in the wheat data set. This was expected 
because, as stated, in this data set all models (including K) are marker based. For this trait, as it 
was for the wheat data set, in some environments (Harare and Mpongue) RKHS outperformed 
BL, but in El Batán the opposite was true.  
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The analysis of predictive ability of models for GLS in maize (Table 5) gave CV 
correlations ranging from 0.425 to 0.600. Also for this trait, predictive ability seemed to be 
higher in Pereira than in San Pedro Lagunillas. And using either the kinship matrix or the 
Gaussian kernel described above, RKHS slightly outperformed the Bayesian LASSO.  
 
 

Table 4. Predictive ability measured as the correlation between 
predicted and actual phenotypes, obtained in a 10-fold cross-
validation, from data analysis of grain yield of 93 wheat lines 
genotyped with 234 DArT molecular markers. Five models* were 
fitted to each of 10 international environments (E1-E10). 

 
P M-BL 

 
PM-BL 

 
M-RKHS 

 
PM-RKHS 

E1 -0.085 0.497 0.499 0.543 0.471 
E2 0.494 0.590 0.596 0.686 0.673 
E3 0.515 0.567 0.568 0.691 0.685 
E4 -0.067 0.514 0.509 0.482 0.446 
E5 0.519 0.527 0.539 0.636 0.657 
E6 0.559 0.531 0.554 0.607 0.666 
E7 0.341 0.582 0.591 0.650 0.624 
E8 0.255 0.466 0.469 0.617 0.540 
E9 0.204 0.449 0.450 0.596 0.561 
E10 0.445 0.506 0.530 0.659 0.665 

* The five fitted models are: pedigree model (P); molecular marker 
regression model using Bayesian LASSO (M-BL); pedigree model (P) 
plus molecular marker model regression using Bayesian LASSO (PM-
BL); molecular marker model using reproducing kernel Hilbert space 
(M-RKHS) regression; and pedigree model (P) plus molecular marker 
model using reproducing kernel Hilbert space regression (PM-RKHS). 
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Table 5. Predictive ability measured as the correlation between predicted and actual 
phenotypes, obtained in a 10-fold cross-validation, from the analysis of Exserohilum 
turcicum (first three rows) and Cercospora zeae-maydis (last two rows) in maize. Lines 
were genotyped with 1152 SNP molecular markers. Five models* were fitted to each 
trait/environment combination. 

Environment K M-BL KM-BL M-RKHS KM-RKHS 
------------------------------Exserohilum turcicum------------------------------- 

El Batán (Mexico) 0.472 0.509 0.512 0.472 0.484 
Harare (Zimbabwe) 0.447 0.465 0.462 0.500 0.475 
Mpongue (Zambia) 0.464 0.452 0.450 0.521 0.499 

-------------------------Cercospora zeae-maydis-------------------------------  
Pereira (Colombia) 0.602 0.549 0.550 0.585 0.600 
San Pedro 
Lagunillas (Mexico) 

0.451 0.425 0.425 0.465 0.460 

*The five models are: kinship model (K), molecular marker  regression model using 
Bayesian LASSO (M-BL); kinship model (K) plus the molecular marker model 
regression using Bayesian LASSO (KM-BL); molecular marker model using 
reproducing kernel Hilbert pace (M-RKHS) regression; and kinship model (K) plus 
molecular marker model using reproducing kernel Hilbert space regression (KM-
RKHS). 

 
Patterns of marker effects in ten environments for the wheat data 

Principal component analysis on the estimated effects of the presence of each 
DArT computed from the PM-BL model for the wheat data is depicted in the biplot in 
Fig. 1. The first two principal components explained 82.30% of the total variability in 
estimated DArT effects. The pattern of correlations between estimated DArT effects 
reflects the patterns of phenotypic correlations observed for the wheat data (see Fig. 1 
and Table 6). These patterns allow classifying environments into three groups. Group 1 
includes environments E2, E3, E6, E7, E8, E9, and E10, which form a compact cluster 
located on the left-hand side of the biplot; these environments have strong correlations 
with each other based on phenotypic as well as estimated marker effect data (Table 6). 
Group 2 has E5 located on the other side of the biplot; it has strong negative correlations 
(phenotypic and based on estimates of marker effects) with the environments in Group 1 
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(E2, E3, E6, E7, E8, E9, and E10). Finally, E4 and E1 of Group 3 showed a moderate to 
low correlation with each other and with the environments in Group 1 and Group 2.  

Evidently, E5 causes a great deal of the interaction between molecular marker 
effects and environments. This is evidenced in its correlation with E1 and E4, which is 
low in absolute value, and in its highly negative correlations with the other environments 
located on the opposite side of the biplot (e.g., E2 and E3). E1 and E4, which had very 
low phenotypic correlations with E2, E3, E6, E7, E8, E9, and E10, also showed that 
genotype × environment is an important component of genetic variability. It should be 
pointed out that the correlations among the four mega-environments in this study may not 
reflect their associations in later years very well due to the dynamics of climate change 
prevailing in many regions of the world.  

The majority of the estimated effects of the 234 DArT markers are located around 
the center of the biplot (i.e., estimated effects were small, in absolute value), which 
reflects shrinkage of the BL model. However, some DArTs (identified by name in Fig. 1) 
had estimated effects that were large in absolute value (shown in Table 7). The estimated 
effect of the presence of a DArT in a given environment can be obtained by orthogonal 
projection of the marker effect displayed in Fig. 1 on the vector of the corresponding 
environment. To illustrate, the presence of DArT markers wPt.4223 and wPt.1859, 
among others, is expected to increase grain yield performance in E1, E4, and E5 and 
strongly decrease grain yield in all environments in Group 1. Those DArTs whose 
presence is expected to increase or decrease grain yield across environments can be 
viewed as contributing to positive genetic correlations in grain yield among 
environments. On the other hand, DArTs whose presence is expected to increase (or 
decrease) grain yield in one environment, and decrease (or increase) in others can be 
viewed as causes of genotype × environment interaction.  

 
Figure 1. Biplot of the first and second principal component axes (Comp. 1 and Comp. 2) of the grain yield 
effect of 234 DArTs estimated from the full-data PM-BL model for the wheat data set in each of 10 
environments (E1-E10). Only the effects of 21 DArTs located far from the center of the biplot were 
identified with their corresponding DArT name (filled-in circles). Three groups of environments and 
molecular markers are delineated as Groups 1, 2, and 3. 
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Table 6. Correlation between phenotypic data (upper triangular) and between estimates of marker effects (lower 
triangular) from data analysis of wheat grain yield from 10 international environments (E1-E10). 

 E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 
E1 --- 0.195 0.219 0.441 -0.221 0.199 0.295 0.240 0.305 0.176 
E2 0.073 --- 0.927 -0.001 -0.901 0.802 0.845 0.826 0.784 0.897 
E3 0.100 0.918 --- 0.015 -0.895 0.811 0.869 0.860 0.804 0.918 
E4 0.432 -0.146 -0.117 --- 0.046 0.073 0.172 0.060 0.248 -0.044 
E5 -0.109 -0.876 -0.869 0.169 --- -0.778 -0.830 -0.812 -0.707 -0.880 
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E6 0.135 0.746 0.760 -0.007 -0.732 ---- 0.827 0.768 0.735 0.774 
E7 0.219 0.833 0.865 -0.037 -0.816 0.832 ---- 0.805 0.842 0.815 
E8 0.147 0.771 0.830 -0.016 -0.764 0.731 0.812 ---- 0.783 0.821 
E9 0.287 0.751 0.790 -0.205 -0.660 0.720 0.849 0.784 --- 0.765 
E10 0.094 0.908 0.919 -0.158 -0.872 0.747 0.844 0.798 0.768 ---- 

 
Table 7. Estimated effects of 21 DArT molecular markers located farthest from the center of the biplot (Fig. 1) of 
principal component analysis of the marker effects in each of 10 international environments (E1-E10) for wheat grain 
yield data. 

DArT Group* E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 
wPt.3030 1 0.059 0.146 0.116 0.038 -0.113 0.090 0.126 0.146 0.102 0.126
wPt.5049 1 0.086 0.065 0.085 0.036 -0.024 0.097 0.128 0.077 0.088 0.056
wPt.6034 1 -0.041 0.104 0.124 -0.067 -0.119 0.044 0.107 0.168 0.025 0.076
wPt.7887 1 -0.039 0.082 0.104 0.007 -0.122 0.056 0.105 0.201 0.074 0.076
wPt.9598 1 -0.013 0.242 0.284 -0.048 -0.229 0.069 0.205 0.109 0.083 0.196
wPt.1420 2 0.040 -0.067 -0.099 0.019 0.040 -0.027 -0.067 -0.098 -0.032 -0.061
wPt.1859 2 0.027 -0.110 -0.099 0.108 0.146 -0.036 -0.049 -0.053 -0.001 -0.084
wPt.4029 2 -0.053 -0.075 -0.107 0.003 0.082 -0.063 -0.083 -0.176 -0.063 -0.083
wPt.7924 2 0.028 -0.109 -0.114 0.070 0.068 -0.045 -0.039 -0.008 -0.014 -0.081
wPt.7992 2 -0.065 -0.056 -0.040 -0.088 0.033 -0.042 -0.043 -0.051 -0.040 -0.016
wPt.8006 2 0.021 -0.092 -0.083 0.000 0.068 -0.063 -0.052 -0.084 -0.051 -0.072
wPt.9369 2 -0.051 -0.045 -0.037 -0.084 0.017 -0.048 -0.059 -0.046 -0.046 -0.019
wPt.9666 2 0.061 -0.071 -0.100 0.025 0.057 -0.040 -0.070 -0.088 -0.026 -0.070
wPt.4223 2,3 0.220 -0.075 -0.055 0.031 0.044 -0.020 -0.025 -0.051 -0.017 -0.046
wPt.4555 3 0.093 -0.005 -0.019 0.076 0.009 0.000 0.023 0.002 0.010 -0.007
wPt.0695 3 0.121 0.001 -0.006 0.063 0.007 -0.015 0.018 0.006 0.042 -0.013
wPt.5316 3 0.080 0.034 0.059 0.062 -0.024 0.055 0.073 0.057 0.069 0.011
wPt.9350 3 0.110 0.009 0.032 0.075 -0.005 -0.023 0.033 0.031 0.032 0.026
wPt.7662 3 0.068 0.055 0.039 0.104 -0.057 0.027 0.033 0.046 0.029 0.016
wPt.6997 -- -0.154 0.014 0.007 -0.040 -0.018 0.002 -0.001 -0.004 -0.015 0.020
wPt.8096 -- -0.007 0.107 0.058 -0.125 -0.040 0.004 0.013 0.012 0.028 0.059

* Group of markers delineated in Fig. 1. 
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Patterns of marker effects in three environments for Exserohilum turcicum (NCLB) 
of the maize data 

Principal component analysis on the estimated effects of the 1152 single 
nucleotide polymorphisms (SNPs) computed from the KM-BL model for the maize data 
is depicted in the biplot in Fig. 2. The first two principal components explained 83.58% 
of the total variability in estimated SNP effects. The correlation among the three 
environments (based on phenotypic data or based on estimates of marker effects) was 
0.50 between Mpongwe and Harare and 0.26 between El Batán and Mpongwe and 
between El Batán and Harare. This pattern of correlations (depicted in Fig. 2) may 
indicate the presence of different races of NCLB in these environments, i.e., a pathogen 
population in El Batán (México) that might be different from populations in Harare and 
Mpongwe (Southern Africa). 

The estimated effect of the allele coded as one in each SNPs and in a given 
environment is obtained by orthogonal projection of the estimated marker effect on the 
vector of the corresponding environment. Here, SNPs whose alleles coded with 1 had 
positive effects (i.e., those with estimated effects pointing in the same direction as the 
environment) are expected to produce an increase of the disease on the genotypes in that 
environment. Therefore, selection should try to decrease the frequency of the allele coded 
with 1. The opposite is true for SNPs whose estimated effects were negative. 

The 21 SNPs with the largest effects (positive or negative) on NCLB (Table 8) are 
located farthest on the biplot in Fig. 2. Some SNPs whose alleles coded with 1 had 
negative effects for the three sites (e.g., PZA03153.3, see Fig. 2 and Table 8) and are 
located in the opposite direction of these sites were marked as Group 1 in Fig. 2; the 
presence of the allele coded with 1 of these SNPs should confer some degree of 
resistance to NCLB across environments. The opposite is true for SNPs in Group 2 and 3 
(Fig. 2); here the presence of the allele coded with 1 is expected to favor the disease in El 
Batán (Group 2) and Harare and Mpongwe (Group 3); selection should thus aim at 
decreasing this allele.  

Finally, caution must be exercised when interpreting the above results since they 
were obtained from one-year data, and the prevalence of NCLB races can change from 
year to year, depending on changes in environmental conditions (temperature, rainfall, 
relative humidity, etc). 
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Figure 2. Biplot of the first and second principal component axes (Comp. 1 and Comp. 2) of the 
Exserohilum turcicum (NCLB) disease effect of 1152 SNPs estimated from the full-data KM-BL model for 
the maize data set in each of three environments: El Batán (México), Harare (Zimbabwe), and Mpongwe 
(Zambia). Only the effects of 24 SNPs located far from the center of the biplot were identified with their 
corresponding SNPs name (filled-in circles). Three groups of environments and molecular markers are 
delineated as Groups 1, 2, and 3. 
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Table 8. Estimated effects of 24 SNP molecular markers located farthest from the center 
of the biplot (Fig. 2) of principal component analysis of the marker effects in each of 
three international environments: El Batán (Mexico), Mpongwe (Zambia), and Harare 
(Zimbabwe) for the maize Exserohilum turcicum (NCLB) disease. The 5 SNP molecular 
markers with the largest positive estimated effects and the 5 SNP molecular marker with 
the largest negative estimated effects in each of the two international environments: 
Pereira (Colombia) and San Pedro Lagunilla (México) for the maize Cercospora zeae-
maydis (GLS) disease (also identified with their names in Fig. 3). 

Exserohilum turcicum (NCLB) 

SNP* El Batán Mpongwe Harare  
PHM12979.9 -0.021 -0.047 -0.018 
PZB00119.1 -0.005 0.004 -0.056 
PZB02145.1 -0.038 -0.007 -0.028 
PZA03658.1 -0.035 -0.043 -0.015 
PZB01047.1 -0.017 0.012 0.038 
PZA00003.11 -0.021 0.013 0.011 
PZA03487.1 0.015 0.041 0.030 
PZB01021.3 0.039 -0.005 0.004 
PZB02544.3 -0.031 -0.014 -0.009 
PZB01460.1 0.020 -0.005 -0.008 
PZA00676.2 0.021 0.014 0.023 
PZA03305.2 0.024 0.011 0.010 
PZB02114.2 0.015 0.017 0.026 
PZA00281.1 0.053 0.004 -0.001 
PZB02227.4 -0.002 0.045 0.022 
PZA03198.3 -0.011 -0.037 -0.021 
PZA03153.3 -0.025 -0.039 -0.023 
PZA03398.1 0.009 -0.009 -0.023 
PZB01432.2 -0.018 -0.044 -0.020 
PZA03386.1 0.001 -0.027 -0.027 
PZA03537.1 0.039 -0.006 0.011 
PZB01569.10 0.019 0.018 0.023 
PZA03319.1 -0.029 -0.002 -0.005 
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PZB01964.1 0.005 -0.021 -0.031 

Cercospora zeae-maydis (GLS) 

SNP# Pereira  SNP# 
San Pedro 
Lagunillas 

PZA03575.2 0.0548 PZD00030.2 0.0309 
PZA03154.2 0.0495 PZA00069.4 0.0275 
PZB01977.1 0.0465 PZA03676.1 0.0261 
PZA02982.5 0.0465 PZA00289.11 0.0250 
PZA03284.3 0.0440 PZA03404.1 0.0240 
PZB01944.1 -0.0516 PZA03559.1 -0.0325 
PZB01482.3 -0.0485 PZA03651.2 -0.0275 
PZB01111.6 -0.0466 PZB00857.2 -0.0254 
PZB01487.1 -0.0451 PZB01471.3 -0.0238 
PZA03570.1 -0.0437 PZA00615.3 -0.0232 
* Name of the markers given in Fig. 2. 
# Name of the markers given in Fig. 3. 
 
Patterns of marker effects in two environments for Cercospora zeae-maydis (GLS) of 
the maize data 

The effects of the SNPs molecular markers for GLS in two environments, Pereira 
and San Pedro Lagunilla are depicted in the scatter-plot (Fig. 3). Based on the molecular 
marker effect, the two sites had a correlation of 0.3381. The five SNPs with the largest 
positive effects and the five SNPs with the largest negative effect on GLS (Table 8) are 
identified by their names in Fig. 3. Markers located toward the lower left corner of the 
scatter-plot of Fig. 3 have a negative effect on GLS (i.e., PZB01482.3, PZA00615.3) and 
provide some degree of resistance to GLS disease in both locations. The opposite is true 
for markers located on the upper right corner of Fig. 3.    
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Figure 3. Scatter-plot of Cercospora zeae-maydis (GLS) disease effect of 1152 SNPs estimated 
from the full-data KM-BL model for the maize data set in each of two environments: Pereira 
(Colombia), and San Pedro Lagunilla (México). Only the effects of 5 SNPs with the largest 
positive and negative effects in both environments were identified with their corresponding 
SNPs name (filled-in circles).  
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CONCLUDING REMARKS 
The results of this study are encouraging; they indicate that, even with a modest 

number of molecular markers, models for GS can attain high predictive ability for genetic 
values of traits of economic interest and under contrasting environmental conditions. 
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Also, marker-based models gave important gains in predictive ability relative to pedigree-
based models. This indicates that GS using BL and RKHS models with pedigree and 
molecular marker information can be used effectively for selecting individuals whose 
phenotypes for various traits and in various environments have yet to be observed. 

In general, M-RHKS and PM-RHKS had similar predictive abilities in the wheat 
data set, and in most cases they outperformed the parametric counterparts, M-BL and 
PM-BL. The increase in predictive ability of the PM models as compared to the M 
models was either nonexistent or only marginal. Similar results were found by de los 
Campos et al. (2009a), perhaps because there is some redundancy between regression on 
the pedigree and regression on the markers (e.g., Habier et al., 2009). The number of 
markers evaluated in the wheat data set was small, and it is expected that larger gains in 
predictive ability can be achieved with high-density markers. 

For the maize data set, the difference in predictive ability between models was not 
as marked as in the wheat data set. This occurred because all models in the maize data set 
were marker-based; they only differed in how marker data were included in the models. 
These results also illustrate certain robustness of models for GS with respect to the choice 
of how marker data are included in the model.  

An advantage of models including a parametric regression on marker covariates, 
such as M-BL and PM-BL, is that, in addition to estimating genetic values, they also 
provide information on ‘marker effects’. This information can be used to attain a better 
understanding of the genetic architecture of the traits under study.  

In our study separate models were fitted to each trait/environment. An alternative 
to these single-environment models for GS is to use multiple-environment (or, 
equivalently, multiple-trait) models where genetic values and marker effects on several 
traits/environments are jointly estimated. Multiple-environment models allow borrowing 
information between correlated environments; thus it can be speculated that multiple-
environment GS models can yield similar or even better predictions for individual 
environments. The literature on GS has focused on single-trait models only; the 
development of multiple-trait models for GS appears as a natural next step.  

The results of this study can also be used to generate a better design for field 
evaluations. For example, they show that in CIMMYT’s Global Wheat Breeding 
Program, prediction of unobserved wheat lines in any of the correlated environments in 
Group 1 (Fig. 1) should be relatively accurate, and the scheme for testing wheat lines in 
any of those environments should be planned accordingly. It can be speculated that only 
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one of the environments in Group 1 should be included in the trial, since information 
lacking on the other environments can be borrowed from the one in use. However, 
unobserved lines in E1 and E4 (which have low correlations with environments in Group 
1) are expected to be poorly predicted when using observed data from environments in 
Group 1. Concerning the analysis of NCLB in the maize data, the results show that 
estimated markers effects in the two African sites (Mpongwe and Harare) (Fig. 2) were 
positively correlated and they were negatively correlated with estimates of marker effects 
obtained for the same trait in in Mexico (El Batán), which is suggestive of marker effect 
× environment interaction. The scatter-plot of Fig. 3 suggested marker effect × 
environment interaction and confirmed the low correlation between environments 
(0.3381).    
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Appendix 
 As stated, a slight extension of the algorithm used to draw samples from the 
posterior distribution of the pedigree model, given by [2b], can be used to obtain samples 
from the posterior distribution of PM-RKHS, [7b],  
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 To see this, note that, from [7b], the fully conditional distribution of { }22 ,,, εσσμ aa  
is proportional to: 
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where iii fyy −=*  is an off-set obtain by subtracting from the data the contribution of 
. if

The above joint conditional distribution is the same as that of the pedigree model with the 
original data, { }iy , replaced by *

iy . Therefore, algorithms used to draw samples from the 
posterior distribution of a pedigree model (e.g., that described in Sorensen and Gianola, 
2002) can be used to draw samples from the posterior distribution of { }22 ,,, εσσμ aa .  

Once these unknowns have been updated, the Gibbs sampler draws samples of 
{ }2, fσf  from the corresponding fully-conditional distribution, which from [7b] is: 
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where iii ayy −−= μ** . The above conditional distribution has the same structure as that 

of ( )22 ,, , εσμσ ya a  in the pedigree model, with: (a) the original data, iy  replaced by **
iy , 

and (b) {  replaced with }aa Sdf ,,, Aa { }ff Sdf ,,, RKHSKf  .Therefore, the same algorithms 

used to draw samples of ( )else , 2
ap σa  in the pedigree model can be used to draw samples 

of ( )else, 2
fp σf . 
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