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ABSTRACT 
The use of molecular marker data has become an important aid in plant breeding, and the 

availability of dense markers has made possible the use of genomic selection for enhancing the 
prediction of genetic values. However, the evaluation of models for genomic selection (GS) in 
real populations is very limited. This article evaluates two parametric models and one semi-
parametric model for GS in two extensive datasets. The first dataset contains historical 
phenotypic records of a series of wheat (Triticum aestivum L.) trials and recently generated 
genomic data. The other dataset pertains to international maize (Zea mays) trials in which 
different traits were measured in maize lines evaluated under severe drought and well-watered 
conditions. The findings of this study, which used extensive cross-validations, showed that 
models including marker information yield high correlations between predicted and observed 
phenotypic outcomes and produce important gains in predictive ability relative to pedigree-
based models; these gains, in the wheat dataset, ranged from 7.7% to 35.7%. Estimates of 
marker effects were different across environmental conditions indicating that genotype × 
environment interaction is an important component of genetic variability. These results 
indicate that GS in plant breeding can be an effective strategy for selecting among lines whose 
phenotypes have yet to be observed. Denser markers will become available soon, and this may 
further improve the ability to predict genetic values for complex traits in plant breeding. 

 
INTRODUCTION 

Genetic improvement of complex traits in plants and animals has been based mainly on the 
standard additive infinitesimal model of quantitative genetics (FISHER, 1918). Animal breeders 
have used this model for predicting breeding values either in a mixed model (BLUP; 
HENDERSON, 1984) or a Bayesian framework (GIANOLA AND FERNANDO, 1986). More recently, 
plant breeders have incorporated pedigree data into linear mixed models for predicting 
breeding values (e.g., PIEPHO et al., 2007; BURGUEÑO et al., 2007; CROSSA et al., 2006, 2007).  

The use of marker data in animal and plant breeding has become an important aid for 
mapping quantitative trait loci (QTL) as well as for marker-assisted selection (MAS) of major 
genes. Linkage disequilibrium between molecular markers and a QTL can be used for 
identifying genomic regions influencing the trait of interest, as well as for improving the 
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prediction of genetic values. In standard models for genomic selection (GS; e.g., MEUWISSEN 
et al., 2001), phenotypic outcomes are regressed on marker genotypes, and knowledge of the 
extent of linkage disequilibrium is not necessary (e.g., LANGE and WHITTAKER, 2001; 
GIANOLA et al., 2003). 

The availability of thousands of genome wide molecular markers has made it possible to 
use GS for enhancing the prediction of genetic values (MEUWISSEN et al., 2001) in both plant 
(e.g., BERNARDO and YU, 2007; PIEPHO, 2009) and animal breeding (GONZALEZ-RECIO et al., 
2008; HAYES et al., 2009; VANRADEN et al., 2008; DE LOS CAMPOS et al., 2009a). 

Coping with the curse of dimensionality and with co-linearity, two issues that arise when 
the number of molecular markers (p) is large relative to the number of observations (n), are two 
important challenges for models for GS. Another challenge is how models can accommodate 
the complexity of quantitative traits (e.g., diverse forms and degrees of interaction between 
genes) as well as the peculiarities of breeding populations in which the standard assumptions of 
an infinitesimal model (such as linkage equilibrium, no natural or artificial selection, and 
assortative mating) do not hold. Parametric (e.g., MEUWISSEN et al., 2001) and semi-parametric 
(e.g., GIANOLA et al., 2006; GIANOLA and VAN KAMM, 2008) procedures address these 
problems differently. 

In standard genetic models, phenotypic outcomes,  iy ( )ni ,...,1= , are viewed as the 
sum of a genetic value, , and a model residual, ig iε ; that is, iii gy ε+= . One method for 
incorporating markers in models for GS is to define  as a parametric regression on marker 
covariates  (that can take on values of 1, 0, or -1 for a bi-allelic marker of a segregating 

population or values of 1 and -1 for inbred lines) of the form , such that 
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εXβy +=  in matrix notation), where jβ  is the regression of 

 on the jth marker covariates .  iy ijx
Estimation of  via multiple regression by ordinary least squares (OLS) is not feasible 

when p>n. Subset regression can be implemented by selecting a small set of markers and 
estimating the effect of the selected markers either by single-marker regression or multiple 
regression via OLS. However, when marker effects are estimated one at a time, there is a 
strong tendency to overestimate the absolute value of the marker effect. This produces over-
fitting and estimates of breeding values that have a low correlation with the true breeding value 
(GODDARD and HAYES, 2007).  

β

A commonly used alternative is to estimate marker effects jointly using penalized 
methods such as ridge regression (HOERL and KENNARD, 1970) or the least absolute value 
selection and shrinkage operator (LASSO; TIBSHIRANI, 1996), or their Bayesian counterparts. 
This approach yields greater accuracy of estimated genetic values, and can be coupled with 
geostatistical models commonly used in plant breeding field trials where the covariance 
structure depends on the spatial proximity of field plots (PIEPHO, 2009).  

In the Bayesian view of ridge regression, marker effects are random variables, all 
drawn from the same normal distribution and, when variance components are known, estimates 
of marker effects are best linear unbiased predictors or BLUP (e.g., SCHAEFFER, 2006). 
However, in ridge regression or its Bayesian counterpart, the extent of shrinkage is 
homogeneous across markers, which may not be appropriate if some markers are located in 
regions that are not associated with genetic variance, while markers in other regions may be 
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linked to QTLs (GODDARD and HAYES, 2007). To overcome this limitation, many authors have 
proposed methods that use marker-specific shrinkage. In a Bayesian setting, this can be 
implemented by using priors of marker effects that are mixtures of scaled-normal densities. 
Examples of this are the Bayes A of MEUWISSEN et al. (2001) and the Bayesian LASSO of 
PARK and CASELLA (2008). 

An alternative to parametric regressions is to use semi-parametric methods such as 
reproducing kernel Hilbert spaces (RKHS) regression (GIANOLA and VAN KAMM, 2008). The 
Bayesian RKHS regression regards genetic values as random variables coming from a 
Gaussian process with a (co)variance structure that is proportional to a kernel matrix K (DE LOS 
CAMPOS et al., 2009b), that is, ( ) ( )jiji ,gg xx ,KCov ∝ , where ,  are vectors of marker 
genotypes for the ith and jth individuals, respectively, and 

ix jx
( ).,.K  is a positive definite function 

evaluated in marker genotypes. One of the most attractive features of RKHS regression is that 
the methodology can be used with almost any information set (e.g., covariates, strings, images, 
graphs). This is particularly important at a time when techniques for characterizing genomes 
are changing rapidly. A second advantage is that with RKHS the model is represented in terms 
of n unknowns, which gives RKHS a great computational advantage relative to parametric 
methods, when p>>n. 

Usually, in addition to phenotypic records and marker genotypes, a pedigree is also 
available. The parametric and semi-parametric models described above can be extended to 
include a regression on a pedigree under the standard assumptions of the infinitesimal additive 
model (e.g., DE LOS CAMPOS et al., 2009a). In this approach, genetic values can be represented 
as the sum of two components, iii ufg += , where  specifies some form of parametric or 
semi-parametric regression on marker genotypes, and  is a standard infinitesimal effect with 
a (co)variance structure modeling the expected resemblance between relatives under an 
infinitesimal model. 

if

iu

Successful application of GS in plant breeding programs requires comprehensive 
phenotypic information. The most important quantitative trait in plant breeding for any species 
is grain yield; other traits, such flowering time in maize, are also very important because they 
reflect the plants’ adaptation to different environmental conditions (BUCKLER et al., 2009) 
(such as drought, altitude, and rainfall) and affect grain yield. In plant breeding, predicting 
breeding values of tested lines can be based on historical series of variety trials, which, in the 
case of the Global Maize and Wheat Breeding Programs of the International Maize and Wheat 
Improvement Center (CIMMYT), are in plentiful supply. These two global breeding programs 
focus on producing stable, high yielding, and widely adapted advanced breeding lines or 
varieties. In maize and wheat, grain yield under drought conditions, flowering time, and 
disease resistance are the primary selection criteria, and the discovery of molecular markers 
that are closely associated to those traits may speed up breeding progress.  
 Recently, many lines evaluated by CIMMYT’s Global Maize and Wheat Breeding 
Programs have been genotyped. This study presents parameter estimates and an evaluation of 
predictive ability of several GS models using two extensive datasets. One contains phenotypic 
records of a series of wheat trials and recently generated genomic data. The other dataset 
pertains to international maize trials in which different traits were measured in maize lines 
evaluated under severe drought and well-watered conditions.  
 

MATERIALS AND METHODS 
Experimental data 
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Two distinct datasets were used: the first one comprises information from a collection 
of 599 historical CIMMYT wheat lines, and the second one includes information on 300 maize 
CIMMYT lines. The specifics of each dataset are described below. 

 
Wheat dataset. The wheat dataset is from CIMMYT’s Global Wheat Program. 

Historically, this program has conducted numerous international trials across a wide variety of 
wheat-producing environments. For this study, we used a subset of 599 wheat lines derived 
from 25 years of Elite Spring Wheat Yield Trials (ESWYT) conducted from 1979 through 
2005. The environments represented in these trials were grouped into four basic target sets of 
environments (mega-environments) (E1-E4). The phenotypic trait considered here was grain 
yield (GY) evaluated in each of the four mega-environments. Hereinafter we will refer to this 
dataset as Wheat-Grain Yield (W-GY). 

A pedigree tracing back many generations was available, and the Browse application of 
the International Crop Information System (ICIS), as described in 
http://cropwiki.irri.org/icis/index.php/TDM_GMS_Browse (MCLAREN et al., 2005), was used 
for deriving the relationship matrix A among the 599 lines. 

Wheat lines were genotyped using 1447 Diversity Array Technology (DArT) markers 
generated by Triticarte Pty. Ltd. (Canberra, Australia; http://www.triticarte.com.au). The DArT 
markers may take on two values, denoted by their presence or absence. In this dataset, the 
overall mean frequency of the minor allele was 0.5607, with a minimum of 0.0083 and a 
maximum of 0.9866. Markers with a minor allele (coded as 1) frequency lower than 0.05 were 
removed. Missing genotypes were imputed using samples from the marginal distribution of 
marker genotypes, that is, ( )jij pBernoullix ˆ~ , where  is the estimated allele frequency 
computed from the non-missing genotypes. The number of DArT markers after edition was 
1,279. 

jp̂

Maize dataset. The maize dataset is from the Drought Tolerance Maize for Africa 
project of CIMMYT’s Global Maize Program. This project focuses on developing drought 
tolerant maize for Africa and comprises several maize breeding programs operating in different 
West African countries in coordination with the tropical maize breeding program established in 
Mexico. The data used here come from a large study aimed at detecting chromosomal regions 
affecting drought tolerance and adaptive traits identified in global maize germplasm based on 
analyses of available marker data from genotyping a total of 300 tropical inbred lines 
genotyped with 1,148 SNPs.  

No pedigree was available for this data. Traits analyzed for this study were grain yield 
(GY), female flowering (FFL) (or days to silking), and male flowering time (MFL) (or days to 
anthesis), as well as the anthesis-silking interval (ASI) evaluated on lines under severe drought 
stress (SS) and well-watered (WW) environments. Hereinafter we will refer to these datasets as 
Maize-Flowering (M-F) and Maize-Grain Yield (M-GY). The number of lines in the M-F 
dataset was 284, whereas 264 lines were available in M-GY. The average minor allele 
frequency in these datasets was 0.20. Markers in each of these datasets were subjected to the 
edition and imputation procedures described above; after editing, the numbers of SNPs 
available for analysis were 1,148 and 1,135 in M-F and M-GY, respectively.  
 
Statistical models 

This study evaluated several models for GS that differ depending on the type of 
information used for constructing predictions (pedigree, markers, or both) and on how 
molecular markers were incorporated into the model (parametric vs. semi-parametric). All the 
unknowns in the model were trait-environment specific, and, consequently, separate models 
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were fitted to each trait-environment combination. For ease of presentation, models are 
described for a generic trait-environment.  

 
Likelihood function. In all models, phenotypic records were described as 

iii gy εμ ++= , where μ  is an intercept,  is the genetic value of the ith line, and ig iε  is a 
model residual. In all environments, the response variable was standardized to a sample 

variance equal to one. The joint distribution of model residuals was ( ) ∏
=

⎟⎟
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⎞
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where  is the number of replicates used for computing the mean value of the ith genotype in 
the corresponding environments. Under this assumption, the likelihood function becomes 
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where  is a vector of genetic values. Models differed on how pedigree and molecular 
marker information was used to describe . In the following sections, we present the different 
classes of models used to incorporate pedigree and marker data and either parametric or semi-
parametric methods for describing .  

{ }ig=g

ig

ig
 

Standard infinitesimal models. In this model, denoted as P (standing for pedigree), ii ug =  
and ( ) ( )22

uu Np σσ A0,uu = , where  is the additive relationship matrix computed from the 

pedigree and  is an additive genetic variance. Following standard assumptions, the joint 
prior of model unknowns in P was 

A
2
uσ

( ) ( ) ( ) ( )uuuuuuu SdfSdfNSdfSdfp ,,,,,,,, 2222222 σχσχσσσμ εεεεεε
−−∝ A0,uu     [2a] 

where ( )..
2
.

2 , Sdfσχ −  are Scaled Inverse Chi-squared priors assigned to the variance 

parameters. The prior scale and degree of freedom parameters were set to  and 1. =S 4, . =df , 
respectively. This prior has finite variance and an expectation of 0.5 (the density plot for this 
prior is given in Figure 1A of Appendix A). Combining [1] and [2a], the joint posterior 
distribution of P is 
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Above, H  denotes all hyper-parameters indexing the prior distribution. This posterior 
distribution has no closed form; however, samples from the above model can be obtained from 
a Gibbs sampler, as described, for example, in SORENSEN and GIANOLA (2002). An R-program 
(R DEVELOPMENT CORE TEAM, 2009) that implements a Gibbs sampler for this model is 
provided in supplementary materials. No pedigree data were available for the maize dataset; 
therefore, this model was only evaluated in the wheat dataset. 

 
Parametric genomic models. Two parametric GS models were used, the standard Best 

Linear Unbiased Prediction (BLUP) (MEUWISSEN et al., 2001; BERNARDO and YU, 2007) and 
the Bayesian LASSO (BL) (PARK and CASELLA, 2008). These two models regress phenotypic 
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outcomes on marker covariates; they differ in the way marker effects are estimated, as 
discussed below. 

Consider a linear regression of the form εXβy ++= μ  and assume 
( ) { }( ) ( )22122 ,, βεβε σσσσ I0,β0,εβε NnDiagNp i

−= . From this model, the BLUP estimates of 
marker effects are (e.g., ROBINSON, 1991) 
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Computation of BLUPs requires knowledge of { }22 ,, βε σσμ . To this end we fitted a 
random effects model, ikiik gy εμ ++=

gi ,...,1= k
, where  is the observed phenotype of the kth 

replicate of the ith genotype ( ;
iky
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g  (e.g., MEUWISSEN et al., 2001; VANRADEN, 2007) where jθ  

is the allelic frequency of the jth marker, and θ  is an average (across markers) allele frequency, 
which in our case was estimated from the marker data.  
 
The Bayesian LASSO method 

The Bayesian LASSO (BL) of PARK and CASELLA (2008) provides an alternative way 
of estimating marker effects. Moreover, this model can be extended to accommodate an 
infinitesimal effect as well, as described in DE LOS CAMPOS et al. (2009a). When an 
infinitesimal effect is included ( ) together with a regression on marker genotypes, 

, the data-equation is , and the joint prior density 

of the model unknowns (upon assigning a flat prior to 
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Above, marker effects are assigned independent Gaussian priors with marker-specific 
variances, ( )22,0~ jjj N τσββ ε . At the next level of the hierarchical model, the ’s are 

assigned IID exponential priors, 

2
jτ

( )222 ~ λττ j

IID

j Exp . At a deeper level of the hierarchy, the 

regularization parameter, , is assigned a Gamma prior with rate (δ) and shape (r), which in 

this study were set t 40−  a 6.0

2λ

=δo nd 11× =r . Finally, independent Scaled Inverse Chi-
squared priors were assigned to the variance parameters, and the scale and degree of freedom 
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parameters were set to  and 1== εSSu 4, == udfdfε , respectively. The above model is 
referred as to PM-BL.  

The effect of the prior choice for λ in the BL has been addressed in DE LOS CAMPOS et 
al. (2009a); these authors studied the influence of the choice of hyper-parameters for λ  on 
inferences of several items and concluded that, even when the prior for λ  had influence on 
inferences about this unknown, model goodness of fit and estimates of genetic values were 
robust with respect to the choice of ( )λp . Figure 2A (Appendix A) depicts the prior density of 
λ corresponding to the values of the hyper-parameters used in this study; this prior gave high 
density over a wide range of values of λ . Also, as shown later, the posterior mean of λ did 
change between traits and datasets, indicating that the posterior distribution moved away from 
the prior. 
 Combining the assumptions of the likelihood [1] and the prior described in [3a], the 
joint posterior distribution is 
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This posterior distribution has no closed form; however, samples from the above model can be 
obtained from a Gibbs sampler, as described in DE LOS CAMPOS et al. (2009a). An R-program 
(R DEVELOPMENT CORE TEAM, 2009) that implements a Gibbs sampler for this model is 
provided as supplementary material. 

The marker-based model, M-BL, is a special case of the above model [3b] with 0u = , 

which implies that . j

p

j
iji xg β∑

=

=
1

 
Semi-parametric models (RKHS). As previously stated, in RKHS, the genetic values 

are viewed as a Gaussian process. When markers and a pedigree are available, genetic values 
can be modeled as the sum of two components, iii fug += , where  is as before and  is a 
Gaussian process with a (co)variance function proportional to the evaluations of a reproducing 
kernel, 
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Above, K is a kernel-matrix, which is symmetric and positive. In this study, the entries 

of these matrices were the evaluations of a Gaussian kernel, ( )
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matrix of sampled squared-Euclidean distances { }ijd . Note that if = , this choice yields ijd 5.q
( ) ( ) 13.02exp,K ≈−=ji xx

5.q

, which implies that a prior correlation of 0.13 is assigned to pairs 
of lines whose squared-Euclidean distances are equal to the median squared-Euclidean 
distance, and higher (lower) prior correlation is assigned to pairs of lines that are closer (farther 
apart) than , in the sense of the squared-Euclidean distance. This choice of kernel may not 
yield the highest predictive ability; however, addressing the problem of kernel choice is 
beyond the scope of the current study. The scale and degree of freedom parameters of the prior 
described in [4a] were 1== fu SS=Sε  and 4, === fu dfdf dfε .  

Combining the assumptions in [1] and [4a], the joint posterior distribution of this 
marker and pedigree model (PM-RKHS) is 
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The above joint posterior distribution has no closed form; however, draws samples from this 
posterior distribution can be obtained using a slightly modified version of the Gibbs sampler 
that implements the pedigree model in [2a]. An R-program (R DEVELOPMENT CORE TEAM, 
2009) that implements a Gibbs sampler for this model is provided in supplementary materials. 

As with parametric methods, a marker-based model, M-RKHS, can be obtained as a 
particular case of PM-RKHS, described in [4b], with 0u = , which implies . if=ig

 
Data Analysis 

Full-data analysis. Models were first fitted using all lines in the training set, and 
inferences for each fit were based on 30,000 samples (obtained after discarding 5,000 samples 
as burn-in; the thinning interval between consecutive observations used in all simulations was 
10). Convergence was checked by inspecting trace plots of variance parameters.  

Using estimates of marker effects of M-BL from the full-data analysis, we performed 
principal component analysis of estimated marker effects. Results are displayed in a biplot of 
the first two principal component axes for estimates of molecular markers and the trait-
environment combination (see Appendix B for further discussion of this).  

Cross-validation. Cross-validation (CV) methods can be used to evaluate the ability of 
a model to predict future outcomes. Here, we designed the CV scheme so as to address the 
following question: What is the expected performance of a genotype with yet-to-be observed 
phenotypes (e.g., newly developed lines)? This is one of the most important prediction 
problems plant breeders face. Predictions of performance of lines whose phenotypes are yet to 
be observed can be used, for example, to decide which of the newly generated lines will be 
evaluated in field trials. To this end, we divided the data into ten folds, by using an index 
variable, , i=1,..,n, that randomly assigns observations to ten disjoint folds, 

, j=1,..,10. CV predictions of the observations in the first fold, 
{ 10,...,1I

{ }i

}∈i

j=IiFj = : { }1:1 == iIiF , 
can be obtained by fitting models with all lines in fold 1 regarded as missing data. This yields 
CV predictions of lines in the first fold, that is, { }1:ˆ =ii Iy . Repeating this exercise for the 2nd, 

3rd,.., 10th folds yields a whole set of CV predictions { }n
iiy 1ˆ =  that can be compared with actual 

observations  to assess predictive ability. In our dataset, the response is the average { }n
iiy 1=
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performance of each line; thus each line appears only once in the data. As a result, CV 
predictions obtained as described above are based completely on the information on other 
genotypes’ performance.  

The wheat and maize experimental data, and all the required computer programs 
written in R (R DEVELOPMENT CORE TEAM, 2009) that fit the BL and RKHS models described 
above are made available in supplementary materials. 
 
Multivariate analysis of estimated marker effects  
 Parametric models as those described in the previous section (BLUP, M-BL, and PM-
BL) yield estimates of marker effects which, in our case, are environment-specific. An 
important volume of literature describes how biplots from singular-value decomposition can be 
used to assess G×E (e.g., CORNELIUS et al., 2001). We used these techniques (see Appendices 
B and C) to study G×E at the level of estimated marker effects from PM-BL or M-BL models. 

 
RESULTS 

We begin the section by presenting parameter estimates obtained when models BL and 
RKHS were fitted using all available records (i.e., no line was regarded as a missing value; in 
other words, a full data model) in the training set. The evaluation of predictive ability is 
introduced later on.  
 
Variance components 

Tables 1a and 1b give the estimates of posterior means of variance parameters and of 
the BL parameter λ, by trait-environment combination and models. The posterior mean of the 
residual variance ( ) can be used to assess model goodness of fit. Since the response variable 
was standardized within trait-environment combinations, the estimate of the residual variance 
gives an indication of the percentage of the phenotypic variance that is attributable to model 
residuals. In the GY-W dataset (Table 1a), RKHS models fitted data markedly better (smaller 

) than P, M-BL, or PM-BL; M-BL had a posterior mean of residual variance that was either 
close to or higher than P, while PM-BL fitted the data better than P.  

2
εσ

2
εσ

Results from the maize datasets were mixed: M-BL fitted the data much better than M-
RKHS for FFL and FLM, regardless of moisture conditions, but the opposite was true (i.e., M-
RKHS fitted data better than M-BL) for ASI and GY (Table 1b).  

The variances of  and  can be used as a measure of the relative contribution of 
each of these components to the conditional expectation function in models where these 
components are present (i.e., P, M-RKHS, and PM-RKHS). From [4a], 

iu if

( ) ( ) 2, ui iiauVar σ= , 
where  is the ith diagonal element of matrix A, and ( iia , ) ( ) ( ) 2

fσ ( )ii xx ,K  i,K iiifVar xx= ; s a 
standardized kernel, with ( ) 1,K =ixix . This does not occur in ( )iia , ; here ( ) iFiia += 1, ,

2
uσ

 
where  is the coefficient of inbreeding for the ith individual. In the wheat population, the 
average value of  was 1.98. For the W-GY dataset, the posterior mean of  was smaller 
in PM-BL and PM-RKHS relative to P models for all four environments (Table 1a), and the 

ratio 

iF

( )

( )iia ,

2

2

, u

f

iia σ
σ

 evaluated at  and at the posterior mean of  and of  was 3.49 

(GY-E1), 2.74 (GY-E2), 2.13 (GY-E3), and 2.54 (GY-E4). These results indicate that in PM 

( ) 98., iia 1= 2
fσ 2

uσ
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models the regression on the markers ( ) makes a much stronger contribution to estimates of 
genetic values than the regression on the pedigree ( ).  

if

2
εσ

iu
TABLE 1a 

Estimates of posterior means of parameters , , , and 2
uσ 2

fσ λ  from the full-data analysis of 
grain yield (GY) of 599 historical wheat lines genotyped with 1,279 DArTs molecular markers. Five 

models* were fitted to each trait (GY) and environment (E1, E2, E3, E4) combination. 
  Parameter 
Trait-
environment Model 

2
εσ  2

uσ  2
fσ  λ  

 P 0.562 0.286 --- --- 
 M-RKHS 0.272 --- 0.825 --- 
GY-E1 PM-RKHS 0.197 0.108 0.746 --- 
 M-BL 0.554 --- --- 20.389 
 PM-BL 0.434 0.141 --- 20.747 
      
 P 0.581 0.248 --- --- 
 M-RKHS 0.394 --- 0.720 --- 
GY-E2 PM-RKHS 0.364 0.115 0.531 --- 
 M-BL 0.574 --- --- 21.994 
 PM-BL 0.501 0.117 --- 24.927 
      
 P 0.492 0.342 --- --- 
 M-RKHS 0.317 --- 0.888 --- 
GY-E3 PM-RKHS 0.283 0.148 0.625 --- 
 M-BL 0.667 --- --- 26.924 
 PM-BL 0.479 0.237 --- 37.423 
      
 P 0.517 0.300 --- --- 
 M-RKHS 0.330 --- 0.771 --- 
GY-E4 PM-RKHS 0.298 0.118 0.594 --- 
 M-BL 0.612 --- --- 24.725 
 PM-BL 0.471 0.169 --- 27.503 

* The five models are: pedigree model (P), molecular marker regression model using Bayesian 
LASSO (M-BL), pedigree (P) plus the molecular marker model regression using Bayesian LASSO 
(PM-BL), molecular marker model using reproducing kernel Hilbert space (M-RKHS) regression, 
and pedigree (P) plus molecular marker model using reproducing kernel Hilbert space (PM-RKHS) 
regression. Estimates of posterior standard deviations (across traits and models) ranged from 0.041, 

0.028, 0.093 and 2.73, to 0.057, 0.060, 0.132 and 11.73 for , , , and 2
εσ

2
uσ 2

fσ λ , respectively. 
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TABLE 1b 
Estimates of posterior means of parameters , , and 2

εσ
2
fσ λ from the full-data analysis of female 

flowering time (FFL), male flowering time (MFL), the MFL to FFL interval (ASI) of 284 maize 
genotypes and 1,148 SNPs, and grain yield (GY) of 264 genotypes and 1,135 SNPs. Two models* 

were fitted to each of the trait (FFL, MFL, ASI, and GY) and environment (SS=severe stress; 
WW=well-watered) combinations. 

 Parameter 
Trait-

environment Model 
2
εσ  2

fσ  λ  
MFL-WW M-RKHS 0.761 0.262 --- 

 M-BL 0.315 --- 28.2 
     

MFL-SS M-RKHS 0.402 0.645 --- 
 M-BL 0.169 --- 18.6 
     

FFL-WW M-RKHS 0.793 0.241 --- 
 M-BL 0.323 --- 28.4 
     

FFL-SS M-RKHS 0.489 0.566 --- 
 M-BL 0.179 --- 18.9 
     

ASI-WW M-RKHS 0.231 0.700 --- 
 M-BL 0.467 --- 41.8 
     

ASI-SS M-RKHS 0.183 0.747 --- 
 M-BL 0.370 --- 32.9 
     

GY-WW M-RKHS 0.252 0.725 --- 
GY-WW M-BL 0.369 --- 31.069 

     
GY-SS M-RKHS 0.212 0.836 --- 
GY-SS M-BL 0.431 --- 33.365 

* The two models are: molecular marker (M) regression model using Bayesian LASSO (M-BL) 
and molecular marker (M) using reproducing kernel Hilbert space (M-RKHS) regression. 
Estimates of posterior standard deviations (across traits and models) ranged from 0.049, 0.096 

and 4.014,  to 0.124, 0.168 and 8.619 for , , and 2
εσ

2
fσ λ , respectively. 

 
Marker effects 

A multivariate analysis of estimated marker effects can be performed using the singular 
value decomposition of a matrix whose rows pertain to markers and columns give the 
estimated effect of the markers for different traits or environments. Appendix B describes the 
methodology in detail. We illustrate its use below with a multivariate analysis of estimates of 
marker effects from the GY wheat dataset. 

The first and second components from the singular value decomposition on the matrix 
of estimated effects, [ ] { }jkβ̂ˆ,..,ˆˆ

41 == ββB , computed from the PM-BL model in each 

   



 12

environment,  (k=1,..,4), of W-GY data are depicted in the biplot of Fig. 1. The first two 
component axes explained 74.44% of the total variability in estimated DArT effects; the 
phenotypic correlations between estimated effects in the four environments showed that E2 and 
E3 had a correlation of 0.661, whereas E2 and E4, and E3 and E4 had correlations of 0.411 and 
0.388, respectively (Table S1 in supplementary materials). On the other hand, estimates of 
marker effects for E1 had lower correlations with those for E2, E3, and E4 (-0.020, -0.193, and 
-0.123, respectively).  

kβ̂

The pattern of correlations between estimated DArT effects reflects the patterns of 
phenotypic correlations observed for W-GY. Environment E1 causes a great deal of the 
interaction between molecular marker effects and the other environments due to its low and 
even negative correlations with E2, E3, and E4. It should be pointed out that the correlation 
between the four mega-environments in this study may not reflect their associations in later 
years very well due to the dynamics of climate change prevailing in many regions of the world.  

The variance of marker effects was slightly smaller in E4, as can be inferred by the 
length of the corresponding vector in Fig. 1. The vast majority of the estimated effects are 
located around the center of the figure (i.e., estimated effects were small, in absolute value), 
which reflects shrinkage of the BL model. However, some DArTs had estimated effects that 
were large in absolute value; those DArTs are identified by name in Fig. 1, and their effects are 
shown in Table S2 (supplementary materials).  

The estimated effect of the presence of a DArT in GY for a given environment can be 
obtained by orthogonal projection of the marker effect displayed in Fig. 1 on the vector of the 
corresponding environment. To illustrate this, consider E1, where the presence of DArTs 
wPt.9256, wPt.6047, and wPt.3904 is expected to increase GY (Fig. 1 and Table S2, 
supplementary materials); in contrast, the presence of DArTs wPt.3462, wPt.3922, and 
wPt.4988 (located in the opposite direction of E1) is expected to reduce GY.  

Those DArTs whose presence is expected to increase or decrease GY across 
environments can be viewed as contributing to positive genetic correlations in GY between 
environments. Examples of this group are DArTs wPt.9256, wPt.6047, and c.373879, whose 
presence increased GY in the four environments; and wPt.3393, c.380591, and c.381717, 
whose presence decreased GY in all environments. However, some DArTs act in an 
‘antagonistic’ fashion, that is, the presence of a DArT increases (decreases) GY in some 
environments and decreases (increases) GY in others. Examples of this group are c.408424, 
wPt.2644, wPt.4988, and wPt.3462, whose presence decreased GY in E1 and is predicted to 
increase GY in all other environments; and wPt.3904, c.345897, and wPt.4706, whose 
presence is expected to increased GY in E1 and to decrease GY in all other environments. 

The effects of all 1,279 DArTs (with the corresponding chromosome number) in each 
of the four environments (E1-E4) can be found in Table S2a (supplementary materials). The 
scores of the first two components axes of the 1,279 DArTs are shown in Table S6 
(supplementary materials).  

Results from multivariate analysis of estimated effects on the maize flowering and 
grain yield datasets are given in Appendix C.  
  
 
 
Figure 1. Biplot of the first and second principal component axes (Comp. 1 and Comp. 2) of the grain yield (GY) 
effect of the 1,279 DArTs estimated from the full data model PM-BL of the wheat dataset in each of four mega-
environments (E1, E2, E3, E4). Only the effects of 17 DArTs that are located far from the center of the biplot 
were identified with their corresponding DArT’s name (filled-in circles). 
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Predictive ability 
 Tables 2a and 2b show the estimated correlations between phenotypic outcomes and 
cross-validation (CV) predictions for W-GY, M-F, and M-GY datasets, respectively. Overall, 
the values of these correlations, especially those obtained with BL or RKHS methods, were 
large across models, datasets, and traits, indicating that genomic selection can be effective for 
predicting the genetic value of lines. Nevertheless, predictive ability was different between 
models, as discussed next.  

In the W-GY, correlations ranged from 0.355 (BLUP in E3) to 0.608 (PM-RKHS in 
E1) (Table 2a), and relative to the P model, the PM-RKHS model showed the highest percent 
gain in CV-correlation in three out of four environments. BLUP was outperformed by BL and 
RKHS methods across environments. For these data, PM models had better predictive ability 
than P models, and the magnitude of the gain in predictive ability attained by including 
markers in the model varied, from a modest 7.7% (PM-BL in GY-E3) to a very important 
35.7% (PM-RKHS in GY-E1) (Table 2a). In general, RKHS outperformed BL in both M and 
PM, and BLUP outperformed P models in three out of four environments (all but E3); 
however, as stated, BLUP was outperformed by BL and RKHS.  

In the M-F, correlations ranged from 0.464 (BLUP for MFL-SS) to 0.790 (M-BL for 
MFL-WW) (Table 2b). BLUP was systematically outperformed by BL and RKHS for these 
traits, while M-BL yielded better predictions than M-RKHS, with relatively high correlation 
values, ranging from 0.774 to 0.790. However, for ASI under severe drought stress and well-
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watered conditions, correlations were not as strong as those found for the other flowering time 
traits, and M-RKHS outperformed M-BL, with correlation values of 0.547 and 0.572, 
respect

er, as stated, in M-
Y, the differences in predictive ability between methods were not marked. 

 

,279 DArT molecu , E2, E3, E4). 
Changes relative to the pedigree model (P) are presented as percentages. 

 

  Model 

ively (Table 2b).  
Predictive correlations in M-GY (Table 2b) were somehow smaller than those obtained 

in flowering traits, and the differences between methods were not as marked. Here, CV 
correlations ranged from 0.415 (M-BL GY under drought stress) to 0.525 (M-BL GY well-
watered). These traits did not yield a clear ranking of models: BL was best for GY under well-
watered conditions, and RKHS was best for GY under drought stress; howev
G

TABLE 2a 
Predictive ability measured as the correlation between predicted and actual phenotypes, obtained in a 10-fold 
cross-validation, from the analysis of grain yield (GY) of 599 historical ESWYT wheat lines genotyped with 

lar markers. Six models* were fitted to GY measured in four environments (E11

Trait-environment P  M-BL PM-BL  BLUP+ M-RKHS PM-RKHS   

             Correla              tion 
GY-E1 0.448 0.601 0.608 0.518 0.542 0.480 
GY-E2 0.417 0.494 0.497 0.493 0.501 0.488 
GY-E3 0.417 0.445 0.478 0.403 0.449 0.355 

GY-E4 0.449 0.5 0.457 0.495 0.464 

change (rel o P) 

-  

 molecular marker model 

+ The range of genetic variance components used for BLUP estimation was 0.8065-0.9141. 

24 0.524 

% ative t

GY-E1 --- 34.2 35.7 15.6 21.0 7.1 

GY-E2 --- 18.5 19.2 18.2 20.1 17.0 

GY-E3 --- 6.7 14.6 -3.4 7.7 14.9

GY-E4 --- 16.7 16.7 1.8 10.2 3.3 
* The six fitted models are: pedigree model (P), molecular marker regression model using Bayesian LASSO (M-
BL), pedigree (P) plus molecular marker model regression using Bayesian LASSO (PM-BL), molecular marker 
model using reproducing kernel Hilbert space (M-RKHS) regression, pedigree (P) plus
using reproducing kernel Hilbert space (PM-RKHS) regression, and the BLUP method. 
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TABLE 2b 
Predictive ability measured as the correlation between predicted and actual phenotypes, obtained in a 10-fold 

cross-validation from evaluating female flowering (FFL), male flowering (MFL), the MFL to FFL interval (ASI) 
of 284 maize genotypes and 1,148 SNPs, and grain yield (GY) of 264 maize genotypes and 1,135 SNPs. Each of 
the three models* was fitted to each combination of four traits (FFL, MFL, ASI, and GY) and two environments 

(SS=severe drought stress, WW=well-watered).  
 Model 

Trait-environment M-RKHS M-BL BLUP# 
MFL-WW 0.607 0.790 ---+ 
MFL-SS 0.674 0.778 0.464 
FFL-WW 0.588 0.781 --- 
FFL-SS 0.648 0.774 0.521 

ASI-WW 0.547 0.513 0.469 
ASI-SS 0.572 0.517 0.481 

    
GY-WW 0.514 0.525 0.515 
GY-SS 0.453 0.415 0.442 

* The two fitted models are: molecular marker (M) regression model using Bayesian LASSO (M-BL), molecular 
marker (M) using reproducing kernel Hilbert space (M-RKHS) regression, and the BLUP method. 
+ BLUPs were not computed since the estimated genetic variances were negligible. 
# Ranges of genetic variance components used for BLUP estimation were 0.000-0.319 for flowering, and 0.017-
0.206 for grain yield.  
 
 

DISCUSSION 
Results found in this study are encouraging and indicate that, even with a modest 

number of molecular markers, models for GS can attain relatively high predictive ability for 
genetic values of traits of economic interest in contrasting environmental conditions. This 
indicates that GS using BL and RKHS models with pedigree and molecular marker information 
can be used effectively for selecting individuals whose phenotypes for various traits have yet to 
be observed. These predictions can be used for developing several rounds of selection without 
phenotyping and for pre-selecting lines that will be evaluated in field trials. Overall, such 
practices can contribute to an important reduction in the generation interval and a simultaneous 
substantial reduction of phenotyping costs. 

Our results show important gains in predictive ability relative to pedigree-based 
models. However, how good are these CV correlations relative to a maximum attainable 
predictive ability? Answering this question requires knowledge of the (‘true’) underlying 
model and of parameter values. As an exercise, let us assume that the model iii gy ε+=

CVig
 holds, 

and also, as the best (unlikely) scenario, that CV predictions, , are such that CVig ,ˆ ig=,ˆ . If 

so, the maximum attainable correlation is ( ) hygCor ggii ==
− σσ 2

1
2),( +σ ε

2 , where h is the 
square root of the heritability of the trait. Thus, if heritability is 0.5, then the maximum 
correlation is 0.707. Above we have assumed that only one replicate is available. For repeated 

measures the maximum correlation is: ( ) hnygCor gigii >+=
−− σσσ ε

2
1

212),( . CV correlations in 
this study ranged from 0.40 to 0.79; these values are below the theoretical maxima, and larger 
gains in predictive ability may be expected when more markers are available. However, even 

   



 16

with complete sequencing, the maximum correlation may not be attained due to, for example, 
inability of the model/experimental design to completely uncover genetic signals. 

Predictive ability of models. In general, M and PM in wheat had similar predictive 
abilities; this is in agreement with previous findings (e.g., DE LOS CAMPOS et al., 2009a) and 
occurs because there is some redundancy between the regression on the pedigree and the 
regression on markers (e.g., HABIER et al., 2009). As the number of molecular markers 
increases, it is reasonable to expect that the relative contribution of pedigree information will 
decrease. Marker-based models in this study included BL, RKHS, and BLUP. Overall, BL and 
RKHS outperformed BLUP in most instances, except in M-GY, where differences in 
predictive ability of each of these methods were small. 

The high predictive ability found for maize flowering and grain yield under drought 
stress conditions is encouraging for the usefulness of GS selection under these conditions, 
which are becoming the rule rather than the exception all over the world due to the dynamics of 
climate change. 

As previously stated, the comparison between BL and RKHS is not strictly fair, 
because results from RKHS could be improved if the kernel is selected based on predictive 
ability or some other criterion, an issue not addressed in this study. However, it should be 
noted that while in some trait-environment combinations RKHS outperformed BL (in the 
wheat dataset, and for GY under severe water stress and ASI in maize), in others (e.g., FFL, 
MFL, and GY under well-watered conditions), the opposite was true. This indicates that the 
problem of model choice is population-trait-environment specific and that a ‘one-size-fits-all’ 
approach to model choice in GS is not appropriate. 

An advantage of parametric methods such as M-BL and PM-BL is that, in addition to 
estimating genetic values, these models also provide information on ‘marker effects’ that can 
be used to gain a better understanding of the underlying architecture of the traits and of 
genotype × environment interaction. The multivariate study of estimates of marker effects 
obtained from single-trait models presented in this study provides a way of identifying which 
markers contribute to positive genetic correlations, and which act in an ‘antagonistic’ fashion. 
This should be taken into account when constructing selection indices that consider multiple 
breeding goals (e.g., yield and yield stability across environments). 

 
CONCLUDING REMARKS 

Genomic selection appears to be a very promising tool for plant breeding. However, 
most studies so far come from simulations, and only a few studies have quantified the 
predictive ability of models for GS in real plant populations evaluated under different 
environmental conditions. We studied the performance of GS in two extensive international 
wheat and maize trials that include different traits and environments. The extensive cross-
validation scheme used in this study showed that models including markers or markers and 
pedigrees yield relatively high correlations between predicted and observed phenotypic 
outcomes, and that the inclusion of molecular markers in pedigree-based models yielded an 
important increase in predictive ability, relative to pedigree-based models. This occurred even 
when a relatively modest number of markers was available. 

Evidence from this study indicates that GS can be an effective strategy for selecting 
among lines whose phenotypes have yet to be observed. Denser markers will become available 
soon, and this may further improve the ability of GS to predict genetic values. 

Results of this study show that while RKHS outperformed BL in some 
traits/environments, the opposite was true in other traits/environments. On the other hand, the 
standard BLUP was outperformed by BL and RKHS in almost all traits, except in M-GY, 
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where differences between models were only modest. Although the predictive ability of RKHS 
models may be improved by suitable choice of the kernel, results seem to indicate that a ‘one-
size-fits-all’ approach to the problem of model choice is not appropriate. The relatively 
promising results from RKHS indicate that designing methods to address the problem of kernel 
choice is a relevant area of research in the context of semi-parametric models for GS. 

In this study, separate models were fitted to each trait-environment combination. 
Multiple-trait models are ubiquitous in plant and animal breeding, and the development and 
evaluation of multiple-trait and multiple-environment models for GS where marker effects and 
genomic values for several traits are estimated jointly appears as a relevant area of research. 
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Appendix A 

Figure 1A. Plot of the prior density for variance components corresponding to the values of  used in this 
study. 
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Figure 2A. Plot of the prior density of lambda, p(λ ), corresponding to the values of lambda (λ ) used in this 
study.  
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Appendix B 
Multivariate analysis of estimated marker effects  

Consider a matrix of estimated molecular marker effects, [ ] { }jkq β̂ˆ,..,ˆ
1 =ββ ,qp

ˆ =×B e 

columns, kβ̂ , qk ,1= mates of the effects of p markers in q different environments. 

The singular value decomposition of this matrix is VUDB ′=ˆ , where 

 whos

 are esti,... ,

[ ] { }jkqqp α==×U  αα ,...,1

and [ ] { }klqq q γ=γ,...,1= γ×V  ar  that span the row (marker) and column 

(environment) spaces of B̂ , respectively, and qq×D  is a diagonal matrix whose non-null entries 

are the singular values of B̂ , that is, 

e ortho-normal matrices

{ }Diag kλ=D .  
The biplot is constructed using the first and second components, that is, 1α , 2α , 1  and 

2 . Points in the biplot are the marker effects projected in the first two components, and are 
displayed using the coordinates provided by 1  and 2α . The “environmental effects” are 
displayed as vectors whose coordinates are given by 1  and 2 . The length of the vectors 
approximates the variance accounted for by the specific molecular marker and “environmental 
effect.” Molecular markers represented in the same direction as the environments had positive 
effects on those environments, whereas molecular markers located in the opposite direction of 
the environmental vectors had negative effects on those environments. The cosine of the angle 
between two environments (or molecular marker effect) approximates the correlation of the 
two environments (or molecular marker), with an angle of zero indicating a correlation of +1, 
an angle of 90° (or -90°) a correlation of 0, and an angle of 180° a correlation of –1.  

γ
γ

α
γ γ
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Appendix C 
 
Marker effects for maize flowering data 

The display of the first two component axes (accounting for 85.79% of the total 
variability in estimated SNPs effects) on estimated effects of the SNP markers in the six trait-
environment combinations (MFL-SS, MFL-WW, FFL-SS, FFL-WW, ASI-SS, and ASI-WW) 
of the M-F dataset obtained from the M-BL model is depicted in Fig. 1C. The correlation 
between trait-environment combinations using marker effects and phenotypic data, and the 
effects of the SNP markers most distant from the center of the biplot are in Tables S3 and S4 
(supplementary materials), respectively. Clearly the two groups of trait-environment 
combinations are dominated more by the trait (ASI vs FFL and MFL) and less by the 
environment (SS and WW). Phenotypic outcomes and estimates of marker effects for ASI 
showed relatively small correlations with those of FFL and MFL; this occurs because ASI is 
defined as the difference between FFL and MFL, and these two traits are positively correlated. 
The pattern of correlations between estimated SNP effects reflects the patterns of observed 
phenotypic correlations (Table S3 in supplementary materials). 

Markers with relatively large (in absolute value) estimated effects are identified by 
name in Fig. 1C, and their effects are shown in Table S4 (supplementary materials). 
Interpretation of the marker effect on these traits should be different than their effect on grain 
yield, since the favorable marker allele decreases both flowering times, whereas for ASI, the 
optimal marker should give an ASI of 0. The alleles coded as 1 of SNPs whose estimated 
effects are located in the left and upper left corner of the biplot (i.e., PZA03551.1, 
PZA03578.1, PZA03222.1, PZA03385.1, PZB01201.1, and PZB00118.2) increase FFL, MFL, 
and ASI (they all have positive effects in all trait-environments combinations), whereas those 
SNPs located on the opposite side of the biplot (lower right corner) (i.e., PZA02587.16, 
PZA00236.7, PZB0255.1, and PZA00676.2) decrease the value of FFL, MFL, and ASI. Those 
SNPs whose presence is expected to increase or decrease traits across environments can be 
viewed as contributing to positive genetic correlations in FFL, MFL, and ASI between 
environments. 

Despite the high heritability (between 0.74 and 0.87) found for flowering time and ASI 
in this maize trial, results show substantial interaction between molecular marker effects and 
environment. The biplot in Fig. 1C shows SNPs that had very contrasting effects across 
environments. For example, the minor alleles of SNPs whose estimated effects are located in 
the upper right corner of the biplot (PZA03592.3, PZB01077.3, and PZB02076.1) increase the 
anthesis-silking interval under drought and well-watered conditions (Table S4 in 
supplementary materials), but decrease days to male and female flowering. In contrast, the 
minor alleles of SNPs whose estimated effects are located in the opposite quadrant of the biplot 
(lower left corner) (PZB00592.1, PHM13183.12, and PZB01964.5) showed a complete rank 
reversal with respect to the effects of SNPs PZA03592.3, PZB01077.3, and PZB01077.3 on 
those trait-environment combinations, i.e., a decrease in ASI under SS and WW, and an 
increase in male and female flowering times. These results are suggestive of important 
molecular marker effect × environment interaction, which in turn causes genotype × 
environment interaction. On the other hand, BUCKLER et al. (2009) reported low levels of 
genotype × environment interaction for the same traits; however, our study covers a more 
diverse genetic background, and the selection history of the population considered here is 
different than the one used in BUCKLER et al. (2009). 

The effects of all 1,148 SNPs (with their corresponding chromosome numbers) in each 
of the six trait-environment combinations can be found in Table S4a (supplementary 
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materials). The scores of the first two component axes of the 1,148 SNPs are in Table S7 
(supplementary materials).  
 
Marker effects for maize grain yield under stress and well-watered environments 
 Since only two trait-environment combinations (GY-WW and GY-SS) are available for 
the M-GY dataset, no principal component analysis was performed, and only the effect of the 
10 SNPs with the largest positive effects and the 10 SNPs with the largest negative effects in 
SS and WW environments are presented in Table S5 (supplementary materials). The 
phenotypic correlations between GW-WW and GY-SS, as well as the correlations between the 
estimated marker effects for grain yield, were low (0.250). This indicates important context-
dependent effects due to genotype × environment interaction. This was confirmed by the fact 
that none of the 10 SNPs with the largest/smallest effects in the GY-WW environment was 
among those with the largest/smallest effects under GY-SS conditions, and by the relatively 
low broad-base heritability of 0.510 and 0.381 under SS and WW environmental conditions, 
respectively. 

The effects of 1,135 SNPs (with their corresponding chromosome numbers) in each of 
the two environments (SS and WW) can be found in Table S5a (supplementary materials). 
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Figure 1C. Biplot of the first and second principal component axes (Comp. 1 and Comp. 2) of maize female 
flowering (FFL) and male flowering (MFL) effects of the 1,148 SNPs estimated from the full data model M-BL of 
the maize dataset in each of two environments, severe water stress (SS) and well-watered (WW). A total of six 
trait-environment combinations (FFL-SS, FFL-WW, MFL-SS, MFL-WW, SS-ASI, and WW-ASI) were formed. 
Only the effects of the 19 SNPs that are located far from the center of the biplot were identified with their 
corresponding SNP’s name (filled-in circles). 
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